#include "opencv2/highgui/highgui.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/nonfree/nonfree.hpp" #include using namespace cv; using namespace std; static void help(char** argv) { cout << "\nThis program demonstrats keypoint finding and matching between 2 images using features2d framework.\n" << " In one case, the 2nd image is synthesized by homography from the first, in the second case, there are 2 images\n" << "\n" << "Case1: second image is obtained from the first (given) image using random generated homography matrix\n" << argv[0] << " [detectorType] [descriptorType] [matcherType] [matcherFilterType] [image] [evaluate(0 or 1)]\n" << "Example of case1:\n" << "./descriptor_extractor_matcher SURF SURF FlannBased NoneFilter cola.jpg 0\n" << "\n" << "Case2: both images are given. If ransacReprojThreshold>=0 then homography matrix are calculated\n" << argv[0] << " [detectorType] [descriptorType] [matcherType] [matcherFilterType] [image1] [image2] [ransacReprojThreshold]\n" << "\n" << "Matches are filtered using homography matrix in case1 and case2 (if ransacReprojThreshold>=0)\n" << "Example of case2:\n" << "./descriptor_extractor_matcher SURF SURF BruteForce CrossCheckFilter cola1.jpg cola2.jpg 3\n" << "\n" << "Possible detectorType values: see in documentation on createFeatureDetector().\n" << "Possible descriptorType values: see in documentation on createDescriptorExtractor().\n" << "Possible matcherType values: see in documentation on createDescriptorMatcher().\n" << "Possible matcherFilterType values: NoneFilter, CrossCheckFilter." << endl; } #define DRAW_RICH_KEYPOINTS_MODE 0 #define DRAW_OUTLIERS_MODE 0 const string winName = "correspondences"; enum { NONE_FILTER = 0, CROSS_CHECK_FILTER = 1 }; static int getMatcherFilterType( const string& str ) { if( str == "NoneFilter" ) return NONE_FILTER; if( str == "CrossCheckFilter" ) return CROSS_CHECK_FILTER; CV_Error(Error::StsBadArg, "Invalid filter name"); return -1; } static void simpleMatching( Ptr& descriptorMatcher, const Mat& descriptors1, const Mat& descriptors2, vector& matches12 ) { vector matches; descriptorMatcher->match( descriptors1, descriptors2, matches12 ); } static void crossCheckMatching( Ptr& descriptorMatcher, const Mat& descriptors1, const Mat& descriptors2, vector& filteredMatches12, int knn=1 ) { filteredMatches12.clear(); vector > matches12, matches21; descriptorMatcher->knnMatch( descriptors1, descriptors2, matches12, knn ); descriptorMatcher->knnMatch( descriptors2, descriptors1, matches21, knn ); for( size_t m = 0; m < matches12.size(); m++ ) { bool findCrossCheck = false; for( size_t fk = 0; fk < matches12[m].size(); fk++ ) { DMatch forward = matches12[m][fk]; for( size_t bk = 0; bk < matches21[forward.trainIdx].size(); bk++ ) { DMatch backward = matches21[forward.trainIdx][bk]; if( backward.trainIdx == forward.queryIdx ) { filteredMatches12.push_back(forward); findCrossCheck = true; break; } } if( findCrossCheck ) break; } } } static void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng ) { H.create(3, 3, CV_32FC1); H.at(0,0) = rng.uniform( 0.8f, 1.2f); H.at(0,1) = rng.uniform(-0.1f, 0.1f); H.at(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols; H.at(1,0) = rng.uniform(-0.1f, 0.1f); H.at(1,1) = rng.uniform( 0.8f, 1.2f); H.at(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows; H.at(2,0) = rng.uniform( -1e-4f, 1e-4f); H.at(2,1) = rng.uniform( -1e-4f, 1e-4f); H.at(2,2) = rng.uniform( 0.8f, 1.2f); warpPerspective( src, dst, H, src.size() ); } static void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective, vector& keypoints1, const Mat& descriptors1, Ptr& detector, Ptr& descriptorExtractor, Ptr& descriptorMatcher, int matcherFilter, bool eval, double ransacReprojThreshold, RNG& rng ) { CV_Assert( !img1.empty() ); Mat H12; if( isWarpPerspective ) warpPerspectiveRand(img1, img2, H12, rng ); else CV_Assert( !img2.empty()/* && img2.cols==img1.cols && img2.rows==img1.rows*/ ); cout << endl << "< Extracting keypoints from second image..." << endl; vector keypoints2; detector->detect( img2, keypoints2 ); cout << keypoints2.size() << " points" << endl << ">" << endl; if( !H12.empty() && eval ) { cout << "< Evaluate feature detector..." << endl; float repeatability; int correspCount; evaluateFeatureDetector( img1, img2, H12, &keypoints1, &keypoints2, repeatability, correspCount ); cout << "repeatability = " << repeatability << endl; cout << "correspCount = " << correspCount << endl; cout << ">" << endl; } cout << "< Computing descriptors for keypoints from second image..." << endl; Mat descriptors2; descriptorExtractor->compute( img2, keypoints2, descriptors2 ); cout << ">" << endl; cout << "< Matching descriptors..." << endl; vector filteredMatches; switch( matcherFilter ) { case CROSS_CHECK_FILTER : crossCheckMatching( descriptorMatcher, descriptors1, descriptors2, filteredMatches, 1 ); break; default : simpleMatching( descriptorMatcher, descriptors1, descriptors2, filteredMatches ); } cout << ">" << endl; if( !H12.empty() && eval ) { cout << "< Evaluate descriptor matcher..." << endl; vector curve; Ptr gdm = makePtr( descriptorExtractor, descriptorMatcher ); evaluateGenericDescriptorMatcher( img1, img2, H12, keypoints1, keypoints2, 0, 0, curve, gdm ); Point2f firstPoint = *curve.begin(); Point2f lastPoint = *curve.rbegin(); int prevPointIndex = -1; cout << "1-precision = " << firstPoint.x << "; recall = " << firstPoint.y << endl; for( float l_p = 0; l_p <= 1 + FLT_EPSILON; l_p+=0.05f ) { int nearest = getNearestPoint( curve, l_p ); if( nearest >= 0 ) { Point2f curPoint = curve[nearest]; if( curPoint.x > firstPoint.x && curPoint.x < lastPoint.x && nearest != prevPointIndex ) { cout << "1-precision = " << curPoint.x << "; recall = " << curPoint.y << endl; prevPointIndex = nearest; } } } cout << "1-precision = " << lastPoint.x << "; recall = " << lastPoint.y << endl; cout << ">" << endl; } vector queryIdxs( filteredMatches.size() ), trainIdxs( filteredMatches.size() ); for( size_t i = 0; i < filteredMatches.size(); i++ ) { queryIdxs[i] = filteredMatches[i].queryIdx; trainIdxs[i] = filteredMatches[i].trainIdx; } if( !isWarpPerspective && ransacReprojThreshold >= 0 ) { cout << "< Computing homography (RANSAC)..." << endl; vector points1; KeyPoint::convert(keypoints1, points1, queryIdxs); vector points2; KeyPoint::convert(keypoints2, points2, trainIdxs); H12 = findHomography( Mat(points1), Mat(points2), RANSAC, ransacReprojThreshold ); cout << ">" << endl; } Mat drawImg; if( !H12.empty() ) // filter outliers { vector matchesMask( filteredMatches.size(), 0 ); vector points1; KeyPoint::convert(keypoints1, points1, queryIdxs); vector points2; KeyPoint::convert(keypoints2, points2, trainIdxs); Mat points1t; perspectiveTransform(Mat(points1), points1t, H12); double maxInlierDist = ransacReprojThreshold < 0 ? 3 : ransacReprojThreshold; for( size_t i1 = 0; i1 < points1.size(); i1++ ) { if( norm(points2[i1] - points1t.at((int)i1,0)) <= maxInlierDist ) // inlier matchesMask[i1] = 1; } // draw inliers drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg, Scalar(0, 255, 0), Scalar(255, 0, 0), matchesMask #if DRAW_RICH_KEYPOINTS_MODE , DrawMatchesFlags::DRAW_RICH_KEYPOINTS #endif ); #if DRAW_OUTLIERS_MODE // draw outliers for( size_t i1 = 0; i1 < matchesMask.size(); i1++ ) matchesMask[i1] = !matchesMask[i1]; drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg, Scalar(255, 0, 0), Scalar(0, 0, 255), matchesMask, DrawMatchesFlags::DRAW_OVER_OUTIMG | DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); #endif cout << "Number of inliers: " << countNonZero(matchesMask) << endl; } else drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg ); imshow( winName, drawImg ); } int main(int argc, char** argv) { if( argc != 7 && argc != 8 ) { help(argv); return -1; } cv::initModule_nonfree(); bool isWarpPerspective = argc == 7; double ransacReprojThreshold = -1; if( !isWarpPerspective ) ransacReprojThreshold = atof(argv[7]); cout << "< Creating detector, descriptor extractor and descriptor matcher ..." << endl; Ptr detector = FeatureDetector::create( argv[1] ); Ptr descriptorExtractor = DescriptorExtractor::create( argv[2] ); Ptr descriptorMatcher = DescriptorMatcher::create( argv[3] ); int mactherFilterType = getMatcherFilterType( argv[4] ); bool eval = !isWarpPerspective ? false : (atoi(argv[6]) == 0 ? false : true); cout << ">" << endl; if( !detector || !descriptorExtractor || !descriptorMatcher ) { cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl; return -1; } cout << "< Reading the images..." << endl; Mat img1 = imread( argv[5] ), img2; if( !isWarpPerspective ) img2 = imread( argv[6] ); cout << ">" << endl; if( img1.empty() || (!isWarpPerspective && img2.empty()) ) { cout << "Can not read images" << endl; return -1; } cout << endl << "< Extracting keypoints from first image..." << endl; vector keypoints1; detector->detect( img1, keypoints1 ); cout << keypoints1.size() << " points" << endl << ">" << endl; cout << "< Computing descriptors for keypoints from first image..." << endl; Mat descriptors1; descriptorExtractor->compute( img1, keypoints1, descriptors1 ); cout << ">" << endl; namedWindow(winName, 1); RNG rng = theRNG(); doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, detector, descriptorExtractor, descriptorMatcher, mactherFilterType, eval, ransacReprojThreshold, rng ); for(;;) { char c = (char)waitKey(0); if( c == '\x1b' ) // esc { cout << "Exiting ..." << endl; break; } else if( isWarpPerspective ) { doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, detector, descriptorExtractor, descriptorMatcher, mactherFilterType, eval, ransacReprojThreshold, rng ); } } return 0; }