// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018-2019, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "precomp.hpp" #include "op_inf_engine.hpp" #include #ifdef HAVE_INF_ENGINE #include #elif defined(ENABLE_PLUGINS) // using plugin API #include "backend.hpp" #include "factory.hpp" #endif #include #include namespace cv { namespace dnn { #ifdef HAVE_INF_ENGINE CV__DNN_INLINE_NS_BEGIN cv::String getInferenceEngineBackendType() { return "NGRAPH"; } cv::String setInferenceEngineBackendType(const cv::String& newBackendType) { if (newBackendType != "NGRAPH") CV_Error(Error::StsNotImplemented, cv::format("DNN/IE: only NGRAPH backend is supported: %s", newBackendType.c_str())); return newBackendType; } CV__DNN_INLINE_NS_END Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob) { // NOTE: Inference Engine sizes are reversed. std::vector dims = blob->getTensorDesc().getDims(); std::vector size(dims.begin(), dims.end()); auto precision = blob->getTensorDesc().getPrecision(); int type = -1; switch (precision) { case InferenceEngine::Precision::FP32: type = CV_32F; break; case InferenceEngine::Precision::U8: type = CV_8U; break; default: CV_Error(Error::StsNotImplemented, "Unsupported blob precision"); } return Mat(size, type, (void*)blob->buffer()); } void infEngineBlobsToMats(const std::vector& blobs, std::vector& mats) { mats.resize(blobs.size()); for (int i = 0; i < blobs.size(); ++i) mats[i] = infEngineBlobToMat(blobs[i]); } static bool init_IE_plugins() { // load and hold IE plugins static InferenceEngine::Core* init_core = new InferenceEngine::Core(); // 'delete' is never called (void)init_core->GetAvailableDevices(); return true; } static InferenceEngine::Core& retrieveIECore(const std::string& id, std::map >& cores) { AutoLock lock(getInitializationMutex()); std::map >::iterator i = cores.find(id); if (i == cores.end()) { std::shared_ptr core = std::make_shared(); cores[id] = core; return *core.get(); } return *(i->second).get(); } static InferenceEngine::Core& create_IE_Core_instance(const std::string& id) { static std::map > cores; return retrieveIECore(id, cores); } static InferenceEngine::Core& create_IE_Core_pointer(const std::string& id) { // load and hold IE plugins static std::map >* cores = new std::map >(); return retrieveIECore(id, *cores); } InferenceEngine::Core& getCore(const std::string& id) { // to make happy memory leak tools use: // - OPENCV_DNN_INFERENCE_ENGINE_HOLD_PLUGINS=0 // - OPENCV_DNN_INFERENCE_ENGINE_CORE_LIFETIME_WORKAROUND=0 static bool param_DNN_INFERENCE_ENGINE_HOLD_PLUGINS = utils::getConfigurationParameterBool("OPENCV_DNN_INFERENCE_ENGINE_HOLD_PLUGINS", true); static bool init_IE_plugins_ = param_DNN_INFERENCE_ENGINE_HOLD_PLUGINS && init_IE_plugins(); CV_UNUSED(init_IE_plugins_); static bool param_DNN_INFERENCE_ENGINE_CORE_LIFETIME_WORKAROUND = utils::getConfigurationParameterBool("OPENCV_DNN_INFERENCE_ENGINE_CORE_LIFETIME_WORKAROUND", #ifdef _WIN32 true #else false #endif ); InferenceEngine::Core& core = param_DNN_INFERENCE_ENGINE_CORE_LIFETIME_WORKAROUND ? create_IE_Core_pointer(id) : create_IE_Core_instance(id); return core; } static bool detectArmPlugin_() { InferenceEngine::Core& ie = getCore("CPU"); const std::vector devices = ie.GetAvailableDevices(); for (std::vector::const_iterator i = devices.begin(); i != devices.end(); ++i) { if (i->find("CPU") != std::string::npos) { const std::string name = ie.GetMetric(*i, METRIC_KEY(FULL_DEVICE_NAME)).as(); CV_LOG_INFO(NULL, "CPU plugin: " << name); return name.find("arm_compute::NEON") != std::string::npos; } } return false; } #if !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT) static bool detectMyriadX_(const std::string& device) { AutoLock lock(getInitializationMutex()); // Lightweight detection InferenceEngine::Core& ie = getCore(device); const std::vector devices = ie.GetAvailableDevices(); for (std::vector::const_iterator i = devices.begin(); i != devices.end(); ++i) { if (i->find(device) != std::string::npos) { const std::string name = ie.GetMetric(*i, METRIC_KEY(FULL_DEVICE_NAME)).as(); CV_LOG_INFO(NULL, "Myriad device: " << name); return name.find("MyriadX") != std::string::npos || name.find("Myriad X") != std::string::npos || name.find("HDDL") != std::string::npos; } } return false; } #endif // !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT) #endif // HAVE_INF_ENGINE CV__DNN_INLINE_NS_BEGIN void resetMyriadDevice() { #ifdef HAVE_INF_ENGINE CV_LOG_INFO(NULL, "DNN: Unregistering both 'MYRIAD' and 'HETERO:MYRIAD,CPU' plugins"); AutoLock lock(getInitializationMutex()); InferenceEngine::Core& ie = getCore("MYRIAD"); try { ie.UnregisterPlugin("MYRIAD"); ie.UnregisterPlugin("HETERO"); } catch (...) {} #endif // HAVE_INF_ENGINE } void releaseHDDLPlugin() { #ifdef HAVE_INF_ENGINE CV_LOG_INFO(NULL, "DNN: Unregistering both 'HDDL' and 'HETERO:HDDL,CPU' plugins"); AutoLock lock(getInitializationMutex()); InferenceEngine::Core& ie = getCore("HDDL"); try { ie.UnregisterPlugin("HDDL"); ie.UnregisterPlugin("HETERO"); } catch (...) {} #endif // HAVE_INF_ENGINE } #ifdef HAVE_INF_ENGINE bool isMyriadX() { static bool myriadX = getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X; return myriadX; } bool isArmComputePlugin() { static bool armPlugin = getInferenceEngineCPUType() == CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE; return armPlugin; } static std::string getInferenceEngineVPUType_() { static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_DNN_IE_VPU_TYPE", ""); if (param_vpu_type == "") { #if defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT) param_vpu_type = OPENCV_DNN_IE_VPU_TYPE_DEFAULT; #else CV_LOG_INFO(NULL, "OpenCV-DNN: running Inference Engine VPU autodetection: Myriad2/X or HDDL. In case of other accelerator types specify 'OPENCV_DNN_IE_VPU_TYPE' parameter"); try { bool isMyriadX_ = detectMyriadX_("MYRIAD"); bool isHDDL_ = detectMyriadX_("HDDL"); if (isMyriadX_ || isHDDL_) { param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X; } else { param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2; } } catch (...) { CV_LOG_WARNING(NULL, "OpenCV-DNN: Failed Inference Engine VPU autodetection. Specify 'OPENCV_DNN_IE_VPU_TYPE' parameter."); param_vpu_type.clear(); } #endif } CV_LOG_INFO(NULL, "OpenCV-DNN: Inference Engine VPU type='" << param_vpu_type << "'"); return param_vpu_type; } cv::String getInferenceEngineVPUType() { static cv::String vpu_type = getInferenceEngineVPUType_(); return vpu_type; } cv::String getInferenceEngineCPUType() { static cv::String cpu_type = detectArmPlugin_() ? CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE : CV_DNN_INFERENCE_ENGINE_CPU_TYPE_X86; return cpu_type; } namespace openvino { bool checkTarget(Target target) { // Lightweight detection const std::vector devices = getCore("").GetAvailableDevices(); for (std::vector::const_iterator i = devices.begin(); i != devices.end(); ++i) { if (std::string::npos != i->find("MYRIAD") && target == DNN_TARGET_MYRIAD) return true; if (std::string::npos != i->find("HDDL") && target == DNN_TARGET_HDDL) return true; else if (std::string::npos != i->find("FPGA") && target == DNN_TARGET_FPGA) return true; else if (std::string::npos != i->find("CPU") && target == DNN_TARGET_CPU) return true; else if (std::string::npos != i->find("GPU") && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) return true; } return false; } } // namespace openvino #else // HAVE_INF_ENGINE namespace openvino { bool checkTarget(Target target) { #if defined(ENABLE_PLUGINS) try { auto& networkBackend = dnn_backend::createPluginDNNNetworkBackend("openvino"); return networkBackend.checkTarget(target); } catch (const std::exception& e) { CV_LOG_INFO(NULL, "DNN/OpenVINO: checkTarget failed: " << e.what()) } #endif return false; } } // namespace openvino cv::String getInferenceEngineBackendType() { #if defined(ENABLE_PLUGINS) try { auto& networkBackend = dnn_backend::createPluginDNNNetworkBackend("openvino"); CV_UNUSED(networkBackend); return CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH; } catch (const std::exception& e) { CV_LOG_INFO(NULL, "DNN/OpenVINO: plugin is not available: " << e.what()) } #endif CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support"); } cv::String setInferenceEngineBackendType(const cv::String& newBackendType) { #if defined(ENABLE_PLUGINS) try { auto& networkBackend = dnn_backend::createPluginDNNNetworkBackend("openvino"); CV_UNUSED(networkBackend); CV_Assert(newBackendType == CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); } catch (const std::exception& e) { CV_LOG_INFO(NULL, "DNN/OpenVINO: plugin is not available: " << e.what()) } #endif CV_UNUSED(newBackendType); CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support"); } cv::String getInferenceEngineVPUType() { #if defined(ENABLE_PLUGINS) try { auto& networkBackend = dnn_backend::createPluginDNNNetworkBackend("openvino"); if (networkBackend.checkTarget(DNN_TARGET_MYRIAD)) return CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X; // 2021.4 supports NCS2 only CV_Error(Error::StsError, "DNN/OpenVINO: DNN_TARGET_MYRIAD is not available"); } catch (const std::exception& e) { CV_LOG_INFO(NULL, "DNN/OpenVINO: plugin is not available: " << e.what()) } #endif CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support"); } cv::String getInferenceEngineCPUType() { #if defined(ENABLE_PLUGINS) try { auto& networkBackend = dnn_backend::createPluginDNNNetworkBackend("openvino"); CV_UNUSED(networkBackend); #if defined(__arm__) || defined(__aarch64__) || defined(_M_ARM64) return CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE; #else return CV_DNN_INFERENCE_ENGINE_CPU_TYPE_X86; #endif } catch (const std::exception& e) { CV_LOG_INFO(NULL, "DNN/OpenVINO: plugin is not available: " << e.what()) } #endif CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support"); } #endif // HAVE_INF_ENGINE CV__DNN_INLINE_NS_END }} // namespace dnn, namespace cv