#!/usr/bin/env python from __future__ import print_function import numpy as np import cv2 as cv import os from tests_common import NewOpenCVTests def load_exposure_seq(path): images = [] times = [] with open(os.path.join(path, 'list.txt'), 'r') as list_file: for line in list_file.readlines(): name, time = line.split() images.append(cv.imread(os.path.join(path, name))) times.append(1. / float(time)) return images, times class UMat(NewOpenCVTests): def test_umat_construct(self): data = np.random.random([512, 512]) # UMat constructors data_um = cv.UMat(data) # from ndarray data_sub_um = cv.UMat(data_um, (128, 256), (128, 256)) # from UMat data_dst_um = cv.UMat(128, 128, cv.CV_64F) # from size/type # test continuous and submatrix flags assert data_um.isContinuous() and not data_um.isSubmatrix() assert not data_sub_um.isContinuous() and data_sub_um.isSubmatrix() # test operation on submatrix cv.multiply(data_sub_um, 2., dst=data_dst_um) assert np.allclose(2. * data[128:256, 128:256], data_dst_um.get()) def test_umat_handle(self): a_um = cv.UMat(256, 256, cv.CV_32F) _ctx_handle = cv.UMat.context() # obtain context handle _queue_handle = cv.UMat.queue() # obtain queue handle _a_handle = a_um.handle(cv.ACCESS_READ) # obtain buffer handle _offset = a_um.offset # obtain buffer offset def test_umat_matching(self): img1 = self.get_sample("samples/data/right01.jpg") img2 = self.get_sample("samples/data/right02.jpg") orb = cv.ORB_create() img1, img2 = cv.UMat(img1), cv.UMat(img2) ps1, descs_umat1 = orb.detectAndCompute(img1, None) ps2, descs_umat2 = orb.detectAndCompute(img2, None) self.assertIsInstance(descs_umat1, cv.UMat) self.assertIsInstance(descs_umat2, cv.UMat) self.assertGreater(len(ps1), 0) self.assertGreater(len(ps2), 0) bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True) res_umats = bf.match(descs_umat1, descs_umat2) res = bf.match(descs_umat1.get(), descs_umat2.get()) self.assertGreater(len(res), 0) self.assertEqual(len(res_umats), len(res)) def test_umat_optical_flow(self): img1 = self.get_sample("samples/data/right01.jpg", cv.IMREAD_GRAYSCALE) img2 = self.get_sample("samples/data/right02.jpg", cv.IMREAD_GRAYSCALE) # Note, that if you want to see performance boost by OCL implementation - you need enough data # For example you can increase maxCorners param to 10000 and increase img1 and img2 in such way: # img = np.hstack([np.vstack([img] * 6)] * 6) feature_params = dict(maxCorners=239, qualityLevel=0.3, minDistance=7, blockSize=7) p0 = cv.goodFeaturesToTrack(img1, mask=None, **feature_params) p0_umat = cv.goodFeaturesToTrack(cv.UMat(img1), mask=None, **feature_params) self.assertEqual(p0_umat.get().shape, p0.shape) p0 = np.array(sorted(p0, key=lambda p: tuple(p[0]))) p0_umat = cv.UMat(np.array(sorted(p0_umat.get(), key=lambda p: tuple(p[0])))) self.assertTrue(np.allclose(p0_umat.get(), p0)) _p1_mask_err = cv.calcOpticalFlowPyrLK(img1, img2, p0, None) _p1_mask_err_umat0 = list(map(lambda umat: umat.get(), cv.calcOpticalFlowPyrLK(img1, img2, p0_umat, None))) _p1_mask_err_umat1 = list(map(lambda umat: umat.get(), cv.calcOpticalFlowPyrLK(cv.UMat(img1), img2, p0_umat, None))) _p1_mask_err_umat2 = list(map(lambda umat: umat.get(), cv.calcOpticalFlowPyrLK(img1, cv.UMat(img2), p0_umat, None))) for _p1_mask_err_umat in [_p1_mask_err_umat0, _p1_mask_err_umat1, _p1_mask_err_umat2]: for data, data_umat in zip(_p1_mask_err, _p1_mask_err_umat): self.assertEqual(data.shape, data_umat.shape) self.assertEqual(data.dtype, data_umat.dtype) for _p1_mask_err_umat in [_p1_mask_err_umat1, _p1_mask_err_umat2]: for data_umat0, data_umat in zip(_p1_mask_err_umat0[:2], _p1_mask_err_umat[:2]): self.assertTrue(np.allclose(data_umat0, data_umat)) def test_umat_merge_mertens(self): if self.extraTestDataPath is None: self.fail('Test data is not available') test_data_path = os.path.join(self.extraTestDataPath, 'cv', 'hdr') images, _ = load_exposure_seq(os.path.join(test_data_path, 'exposures')) # As we want to test mat vs. umat here, we temporarily set only one worker-thread to achieve # deterministic summations inside mertens' parallelized process. num_threads = cv.getNumThreads() cv.setNumThreads(1) merge = cv.createMergeMertens() mat_result = merge.process(images) umat_images = [cv.UMat(img) for img in images] umat_result = merge.process(umat_images) cv.setNumThreads(num_threads) self.assertTrue(np.allclose(umat_result.get(), mat_result)) if __name__ == '__main__': NewOpenCVTests.bootstrap()