/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" typedef struct _PointInfo { CvPoint pt; int left_neigh; int right_neigh; } icvPointInfo; static CvStatus icvFindDominantPointsIPAN( CvSeq * contour, CvMemStorage * storage, CvSeq ** corners, int dmin2, int dmax2, int dneigh2, float amax ) { CvStatus status = CV_OK; /* variables */ int n = contour->total; float *sharpness; float *distance; icvPointInfo *ptInf; int i, j, k; CvSeqWriter writer; float mincos = (float) cos( 3.14159265359 * amax / 180 ); /* check bad arguments */ if( contour == NULL ) return CV_NULLPTR_ERR; if( storage == NULL ) return CV_NULLPTR_ERR; if( corners == NULL ) return CV_NULLPTR_ERR; if( dmin2 < 0 ) return CV_BADSIZE_ERR; if( dmax2 < dmin2 ) return CV_BADSIZE_ERR; if( (dneigh2 > dmax2) || (dneigh2 < 0) ) return CV_BADSIZE_ERR; if( (amax < 0) || (amax > 180) ) return CV_BADSIZE_ERR; sharpness = (float *) cvAlloc( n * sizeof( float )); distance = (float *) cvAlloc( n * sizeof( float )); ptInf = (icvPointInfo *) cvAlloc( n * sizeof( icvPointInfo )); /*****************************************************************************************/ /* First pass */ /*****************************************************************************************/ if( CV_IS_SEQ_CHAIN_CONTOUR( contour )) { CvChainPtReader reader; cvStartReadChainPoints( (CvChain *) contour, &reader ); for( i = 0; i < n; i++ ) { CV_READ_CHAIN_POINT( ptInf[i].pt, reader ); } } else if( CV_IS_SEQ_POINT_SET( contour )) { CvSeqReader reader; cvStartReadSeq( contour, &reader, 0 ); for( i = 0; i < n; i++ ) { CV_READ_SEQ_ELEM( ptInf[i].pt, reader ); } } else { return CV_BADFLAG_ERR; } for( i = 0; i < n; i++ ) { /* find nearest suitable points which satisfy distance constraint >dmin */ int left_near = 0; int right_near = 0; int left_far, right_far; float dist_l = 0; float dist_r = 0; int i_plus = 0; int i_minus = 0; float max_cos_alpha; /* find right minimum */ while( dist_r < dmin2 ) { float dx, dy; int ind; if( i_plus >= n ) goto error; right_near = i_plus; if( dist_r < dneigh2 ) ptInf[i].right_neigh = i_plus; i_plus++; ind = (i + i_plus) % n; dx = (float) (ptInf[i].pt.x - ptInf[ind].pt.x); dy = (float) (ptInf[i].pt.y - ptInf[ind].pt.y); dist_r = dx * dx + dy * dy; } /* find right maximum */ while( dist_r <= dmax2 ) { float dx, dy; int ind; if( i_plus >= n ) goto error; distance[(i + i_plus) % n] = cvSqrt( dist_r ); if( dist_r < dneigh2 ) ptInf[i].right_neigh = i_plus; i_plus++; right_far = i_plus; ind = (i + i_plus) % n; dx = (float) (ptInf[i].pt.x - ptInf[ind].pt.x); dy = (float) (ptInf[i].pt.y - ptInf[ind].pt.y); dist_r = dx * dx + dy * dy; } right_far = i_plus; /* left minimum */ while( dist_l < dmin2 ) { float dx, dy; int ind; if( i_minus <= -n ) goto error; left_near = i_minus; if( dist_l < dneigh2 ) ptInf[i].left_neigh = i_minus; i_minus--; ind = i + i_minus; ind = (ind < 0) ? (n + ind) : ind; dx = (float) (ptInf[i].pt.x - ptInf[ind].pt.x); dy = (float) (ptInf[i].pt.y - ptInf[ind].pt.y); dist_l = dx * dx + dy * dy; } /* find left maximum */ while( dist_l <= dmax2 ) { float dx, dy; int ind; if( i_minus <= -n ) goto error; ind = i + i_minus; ind = (ind < 0) ? (n + ind) : ind; distance[ind] = cvSqrt( dist_l ); if( dist_l < dneigh2 ) ptInf[i].left_neigh = i_minus; i_minus--; left_far = i_minus; ind = i + i_minus; ind = (ind < 0) ? (n + ind) : ind; dx = (float) (ptInf[i].pt.x - ptInf[ind].pt.x); dy = (float) (ptInf[i].pt.y - ptInf[ind].pt.y); dist_l = dx * dx + dy * dy; } left_far = i_minus; if( (i_plus - i_minus) > n + 2 ) goto error; max_cos_alpha = -1; for( j = left_far + 1; j < left_near; j++ ) { float dx, dy; float a, a2; int leftind = i + j; leftind = (leftind < 0) ? (n + leftind) : leftind; a = distance[leftind]; a2 = a * a; for( k = right_near + 1; k < right_far; k++ ) { int ind = (i + k) % n; float c2, cosalpha; float b = distance[ind]; float b2 = b * b; /* compute cosinus */ dx = (float) (ptInf[leftind].pt.x - ptInf[ind].pt.x); dy = (float) (ptInf[leftind].pt.y - ptInf[ind].pt.y); c2 = dx * dx + dy * dy; cosalpha = (a2 + b2 - c2) / (2 * a * b); max_cos_alpha = MAX( max_cos_alpha, cosalpha ); if( max_cos_alpha < mincos ) max_cos_alpha = -1; sharpness[i] = max_cos_alpha; } } } /*****************************************************************************************/ /* Second pass */ /*****************************************************************************************/ cvStartWriteSeq( (contour->flags & ~CV_SEQ_ELTYPE_MASK) | CV_SEQ_ELTYPE_INDEX, sizeof( CvSeq ), sizeof( int ), storage, &writer ); /* second pass - nonmaxima suppression */ /* neighborhood of point < dneigh2 */ for( i = 0; i < n; i++ ) { int suppressed = 0; if( sharpness[i] == -1 ) continue; for( j = 1; (j <= ptInf[i].right_neigh) && (suppressed == 0); j++ ) { if( sharpness[i] < sharpness[(i + j) % n] ) suppressed = 1; } for( j = -1; (j >= ptInf[i].left_neigh) && (suppressed == 0); j-- ) { int ind = i + j; ind = (ind < 0) ? (n + ind) : ind; if( sharpness[i] < sharpness[ind] ) suppressed = 1; } if( !suppressed ) CV_WRITE_SEQ_ELEM( i, writer ); } *corners = cvEndWriteSeq( &writer ); cvFree( &sharpness ); cvFree( &distance ); cvFree( &ptInf ); return status; error: /* dmax is so big (more than contour diameter) that algorithm could become infinite cycle */ cvFree( &sharpness ); cvFree( &distance ); cvFree( &ptInf ); return CV_BADRANGE_ERR; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: icvFindDominantPoints // Purpose: // Applies some algorithm to find dominant points ( corners ) of contour // // Context: // Parameters: // contours - pointer to input contour object. // out_numbers - array of dominant points indices // count - length of out_numbers array on input // and numbers of founded dominant points on output // // method - only CV_DOMINANT_IPAN now // parameters - array of parameters // for IPAN algorithm // [0] - minimal distance // [1] - maximal distance // [2] - neighborhood distance (must be not greater than dmaximal distance) // [3] - maximal possible angle of curvature // Returns: // CV_OK or error code // Notes: // User must allocate out_numbers array. If it is small - function fills array // with part of points and returns error //F*/ CV_IMPL CvSeq* cvFindDominantPoints( CvSeq * contour, CvMemStorage * storage, int method, double parameter1, double parameter2, double parameter3, double parameter4 ) { CvSeq* corners = 0; if( !contour ) CV_Error( CV_StsNullPtr, "" ); if( !storage ) storage = contour->storage; if( !storage ) CV_Error( CV_StsNullPtr, "" ); switch (method) { case CV_DOMINANT_IPAN: { int dmin = cvRound(parameter1); int dmax = cvRound(parameter2); int dneigh = cvRound(parameter3); int amax = cvRound(parameter4); if( amax == 0 ) amax = 150; if( dmin == 0 ) dmin = 7; if( dmax == 0 ) dmax = dmin + 2; if( dneigh == 0 ) dneigh = dmin; IPPI_CALL( icvFindDominantPointsIPAN( contour, storage, &corners, dmin*dmin, dmax*dmax, dneigh*dneigh, (float)amax )); } break; default: CV_Error( CV_StsBadArg, "" ); } return corners; } /* End of file. */