// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "test_precomp.hpp" namespace cvtest { #ifdef HAVE_HALIDE using namespace cv; using namespace dnn; static void loadNet(const std::string& weights, const std::string& proto, const std::string& framework, Net* net) { if (framework == "caffe") { *net = cv::dnn::readNetFromCaffe(proto, weights); } else if (framework == "torch") { *net = cv::dnn::readNetFromTorch(weights); } else if (framework == "tensorflow") { *net = cv::dnn::readNetFromTensorflow(weights); } else CV_Error(Error::StsNotImplemented, "Unknown framework " + framework); } static void test(const std::string& weights, const std::string& proto, const std::string& scheduler, int inWidth, int inHeight, const std::string& outputLayer, const std::string& framework, int targetId, double l1 = 1e-5, double lInf = 1e-4) { Mat input(inHeight, inWidth, CV_32FC3), outputDefault, outputHalide; randu(input, 0.0f, 1.0f); Net netDefault, netHalide; loadNet(weights, proto, framework, &netDefault); loadNet(weights, proto, framework, &netHalide); netDefault.setInput(blobFromImage(input.clone(), 1.0f, Size(), Scalar(), false)); outputDefault = netDefault.forward(outputLayer).clone(); netHalide.setInput(blobFromImage(input.clone(), 1.0f, Size(), Scalar(), false)); netHalide.setPreferableBackend(DNN_BACKEND_HALIDE); netHalide.setPreferableTarget(targetId); netHalide.setHalideScheduler(scheduler); outputHalide = netHalide.forward(outputLayer).clone(); normAssert(outputDefault, outputHalide, "First run", l1, lInf); // An extra test: change input. input *= 0.1f; netDefault.setInput(blobFromImage(input.clone(), 1.0, Size(), Scalar(), false)); netHalide.setInput(blobFromImage(input.clone(), 1.0, Size(), Scalar(), false)); normAssert(outputDefault, outputHalide, "Second run", l1, lInf); // Swap backends. netHalide.setPreferableBackend(DNN_BACKEND_DEFAULT); netHalide.setPreferableTarget(DNN_TARGET_CPU); outputDefault = netHalide.forward(outputLayer).clone(); netDefault.setPreferableBackend(DNN_BACKEND_HALIDE); netDefault.setPreferableTarget(targetId); netDefault.setHalideScheduler(scheduler); outputHalide = netDefault.forward(outputLayer).clone(); normAssert(outputDefault, outputHalide, "Swap backends", l1, lInf); } //////////////////////////////////////////////////////////////////////////////// // CPU target //////////////////////////////////////////////////////////////////////////////// TEST(Reproducibility_GoogLeNet_Halide, Accuracy) { test(findDataFile("dnn/bvlc_googlenet.caffemodel", false), findDataFile("dnn/bvlc_googlenet.prototxt", false), "", 227, 227, "prob", "caffe", DNN_TARGET_CPU); }; TEST(Reproducibility_AlexNet_Halide, Accuracy) { test(findDataFile("dnn/bvlc_alexnet.caffemodel", false), findDataFile("dnn/bvlc_alexnet.prototxt", false), findDataFile("dnn/halide_scheduler_alexnet.yml", false), 227, 227, "prob", "caffe", DNN_TARGET_CPU); }; TEST(Reproducibility_ResNet_50_Halide, Accuracy) { test(findDataFile("dnn/ResNet-50-model.caffemodel", false), findDataFile("dnn/ResNet-50-deploy.prototxt", false), findDataFile("dnn/halide_scheduler_resnet_50.yml", false), 224, 224, "prob", "caffe", DNN_TARGET_CPU); }; TEST(Reproducibility_SqueezeNet_v1_1_Halide, Accuracy) { test(findDataFile("dnn/squeezenet_v1.1.caffemodel", false), findDataFile("dnn/squeezenet_v1.1.prototxt", false), findDataFile("dnn/halide_scheduler_squeezenet_v1_1.yml", false), 227, 227, "prob", "caffe", DNN_TARGET_CPU); }; TEST(Reproducibility_Inception_5h_Halide, Accuracy) { test(findDataFile("dnn/tensorflow_inception_graph.pb", false), "", findDataFile("dnn/halide_scheduler_inception_5h.yml", false), 224, 224, "softmax2", "tensorflow", DNN_TARGET_CPU); }; TEST(Reproducibility_ENet_Halide, Accuracy) { test(findDataFile("dnn/Enet-model-best.net", false), "", findDataFile("dnn/halide_scheduler_enet.yml", false), 512, 512, "l367_Deconvolution", "torch", DNN_TARGET_CPU, 2e-5, 0.15); }; //////////////////////////////////////////////////////////////////////////////// // OpenCL target //////////////////////////////////////////////////////////////////////////////// TEST(Reproducibility_GoogLeNet_Halide_opencl, Accuracy) { test(findDataFile("dnn/bvlc_googlenet.caffemodel", false), findDataFile("dnn/bvlc_googlenet.prototxt", false), "", 227, 227, "prob", "caffe", DNN_TARGET_OPENCL); }; TEST(Reproducibility_AlexNet_Halide_opencl, Accuracy) { test(findDataFile("dnn/bvlc_alexnet.caffemodel", false), findDataFile("dnn/bvlc_alexnet.prototxt", false), findDataFile("dnn/halide_scheduler_opencl_alexnet.yml", false), 227, 227, "prob", "caffe", DNN_TARGET_OPENCL); }; TEST(Reproducibility_ResNet_50_Halide_opencl, Accuracy) { test(findDataFile("dnn/ResNet-50-model.caffemodel", false), findDataFile("dnn/ResNet-50-deploy.prototxt", false), findDataFile("dnn/halide_scheduler_opencl_resnet_50.yml", false), 224, 224, "prob", "caffe", DNN_TARGET_OPENCL); }; TEST(Reproducibility_SqueezeNet_v1_1_Halide_opencl, Accuracy) { test(findDataFile("dnn/squeezenet_v1.1.caffemodel", false), findDataFile("dnn/squeezenet_v1.1.prototxt", false), findDataFile("dnn/halide_scheduler_opencl_squeezenet_v1_1.yml", false), 227, 227, "prob", "caffe", DNN_TARGET_OPENCL); }; TEST(Reproducibility_Inception_5h_Halide_opencl, Accuracy) { test(findDataFile("dnn/tensorflow_inception_graph.pb", false), "", findDataFile("dnn/halide_scheduler_opencl_inception_5h.yml", false), 224, 224, "softmax2", "tensorflow", DNN_TARGET_OPENCL); }; TEST(Reproducibility_ENet_Halide_opencl, Accuracy) { test(findDataFile("dnn/Enet-model-best.net", false), "", findDataFile("dnn/halide_scheduler_opencl_enet.yml", false), 512, 512, "l367_Deconvolution", "torch", DNN_TARGET_OPENCL, 2e-5, 0.14); }; #endif // HAVE_HALIDE } // namespace cvtest