#ifndef CV2_CONVERT_HPP #define CV2_CONVERT_HPP #include "cv2.hpp" #include "cv2_util.hpp" #include "cv2_numpy.hpp" #include <vector> #include <string> #include <type_traits> // std::enable_if extern PyTypeObject* pyopencv_Mat_TypePtr; #define CV_HAS_CONVERSION_ERROR(x) (((x) == -1) && PyErr_Occurred()) inline bool isBool(PyObject* obj) CV_NOEXCEPT { return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj); } //====================================================================================================================== // exception-safe pyopencv_to template<typename _Tp> static bool pyopencv_to_safe(PyObject* obj, _Tp& value, const ArgInfo& info) { try { return pyopencv_to(obj, value, info); } catch (const std::exception &e) { PyErr_SetString(opencv_error, cv::format("Conversion error: %s, what: %s", info.name, e.what()).c_str()); return false; } catch (...) { PyErr_SetString(opencv_error, cv::format("Conversion error: %s", info.name).c_str()); return false; } } //====================================================================================================================== template<typename T, class TEnable = void> // TEnable is used for SFINAE checks struct PyOpenCV_Converter { //static inline bool to(PyObject* obj, T& p, const ArgInfo& info); //static inline PyObject* from(const T& src); }; // --- Generic template<typename T> bool pyopencv_to(PyObject* obj, T& p, const ArgInfo& info) { return PyOpenCV_Converter<T>::to(obj, p, info); } template<typename T> PyObject* pyopencv_from(const T& src) { return PyOpenCV_Converter<T>::from(src); } // --- Matx template<typename _Tp, int m, int n> bool pyopencv_to(PyObject* o, cv::Matx<_Tp, m, n>& mx, const ArgInfo& info) { if (!o || o == Py_None) { return true; } cv::Mat tmp; if (!pyopencv_to(o, tmp, info)) { return false; } tmp.copyTo(mx); return true; } template<typename _Tp, int m, int n> PyObject* pyopencv_from(const cv::Matx<_Tp, m, n>& matx) { return pyopencv_from(cv::Mat(matx)); } // --- bool template<> bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info); template<> PyObject* pyopencv_from(const bool& value); // --- Mat template<> bool pyopencv_to(PyObject* o, cv::Mat& m, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Mat& m); // --- Ptr template<typename T> struct PyOpenCV_Converter< cv::Ptr<T> > { static PyObject* from(const cv::Ptr<T>& p) { if (!p) Py_RETURN_NONE; return pyopencv_from(*p); } static bool to(PyObject *o, cv::Ptr<T>& p, const ArgInfo& info) { if (!o || o == Py_None) return true; p = cv::makePtr<T>(); return pyopencv_to(o, *p, info); } }; // --- ptr template<> bool pyopencv_to(PyObject* obj, void*& ptr, const ArgInfo& info); PyObject* pyopencv_from(void*& ptr); // --- Scalar template<> bool pyopencv_to(PyObject *o, cv::Scalar& s, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Scalar& src); // --- size_t template<> bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info); template<> PyObject* pyopencv_from(const size_t& value); // --- int template<> bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info); template<> PyObject* pyopencv_from(const int& value); // --- int64 template<> bool pyopencv_to(PyObject* obj, int64& value, const ArgInfo& info); template<> PyObject* pyopencv_from(const int64& value); // There is conflict between "size_t" and "unsigned int". // They are the same type on some 32-bit platforms. template<typename T> struct PyOpenCV_Converter < T, typename std::enable_if< std::is_same<unsigned int, T>::value && !std::is_same<unsigned int, size_t>::value >::type > { static inline PyObject* from(const unsigned int& value) { return PyLong_FromUnsignedLong(value); } static inline bool to(PyObject* obj, unsigned int& value, const ArgInfo& info) { CV_UNUSED(info); if(!obj || obj == Py_None) return true; if(PyInt_Check(obj)) value = (unsigned int)PyInt_AsLong(obj); else if(PyLong_Check(obj)) value = (unsigned int)PyLong_AsLong(obj); else return false; return value != (unsigned int)-1 || !PyErr_Occurred(); } }; // --- uchar template<> bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info); template<> PyObject* pyopencv_from(const uchar& value); // --- char template<> bool pyopencv_to(PyObject* obj, char& value, const ArgInfo& info); // --- double template<> bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info); template<> PyObject* pyopencv_from(const double& value); // --- float template<> bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info); template<> PyObject* pyopencv_from(const float& value); // --- string template<> bool pyopencv_to(PyObject* obj, cv::String &value, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::String& value); #if CV_VERSION_MAJOR == 3 template<> PyObject* pyopencv_from(const std::string& value); #endif // --- Size template<> bool pyopencv_to(PyObject* obj, cv::Size& sz, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Size& sz); template<> bool pyopencv_to(PyObject* obj, cv::Size_<float>& sz, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Size_<float>& sz); // --- Rect template<> bool pyopencv_to(PyObject* obj, cv::Rect& r, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Rect& r); template<> bool pyopencv_to(PyObject* obj, cv::Rect2d& r, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Rect2d& r); // --- RotatedRect template<> bool pyopencv_to(PyObject* obj, cv::RotatedRect& dst, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::RotatedRect& src); // --- Range template<> bool pyopencv_to(PyObject* obj, cv::Range& r, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Range& r); // --- Point template<> bool pyopencv_to(PyObject* obj, cv::Point& p, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Point& p); template<> bool pyopencv_to(PyObject* obj, cv::Point2f& p, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Point2f& p); template<> bool pyopencv_to(PyObject* obj, cv::Point2d& p, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Point2d& p); template<> bool pyopencv_to(PyObject* obj, cv::Point3f& p, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Point3f& p); template<> bool pyopencv_to(PyObject* obj, cv::Point3d& p, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::Point3d& p); // --- Vec template<typename _Tp, int cn> bool pyopencv_to(PyObject* o, cv::Vec<_Tp, cn>& vec, const ArgInfo& info) { return pyopencv_to(o, (cv::Matx<_Tp, cn, 1>&)vec, info); } bool pyopencv_to(PyObject* obj, cv::Vec4d& v, ArgInfo& info); PyObject* pyopencv_from(const cv::Vec4d& v); bool pyopencv_to(PyObject* obj, cv::Vec4f& v, ArgInfo& info); PyObject* pyopencv_from(const cv::Vec4f& v); bool pyopencv_to(PyObject* obj, cv::Vec4i& v, ArgInfo& info); PyObject* pyopencv_from(const cv::Vec4i& v); bool pyopencv_to(PyObject* obj, cv::Vec3d& v, ArgInfo& info); PyObject* pyopencv_from(const cv::Vec3d& v); bool pyopencv_to(PyObject* obj, cv::Vec3f& v, ArgInfo& info); PyObject* pyopencv_from(const cv::Vec3f& v); bool pyopencv_to(PyObject* obj, cv::Vec3i& v, ArgInfo& info); PyObject* pyopencv_from(const cv::Vec3i& v); bool pyopencv_to(PyObject* obj, cv::Vec2d& v, ArgInfo& info); PyObject* pyopencv_from(const cv::Vec2d& v); bool pyopencv_to(PyObject* obj, cv::Vec2f& v, ArgInfo& info); PyObject* pyopencv_from(const cv::Vec2f& v); bool pyopencv_to(PyObject* obj, cv::Vec2i& v, ArgInfo& info); PyObject* pyopencv_from(const cv::Vec2i& v); // --- TermCriteria template<> bool pyopencv_to(PyObject* obj, cv::TermCriteria& dst, const ArgInfo& info); template<> PyObject* pyopencv_from(const cv::TermCriteria& src); // --- Moments template<> PyObject* pyopencv_from(const cv::Moments& m); // --- pair template<> PyObject* pyopencv_from(const std::pair<int, double>& src); // --- vector template <typename Tp> struct pyopencvVecConverter; template <typename Tp> bool pyopencv_to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } return pyopencvVecConverter<Tp>::to(obj, value, info); } template <typename Tp> PyObject* pyopencv_from(const std::vector<Tp>& value) { return pyopencvVecConverter<Tp>::from(value); } template <typename Tp> static bool pyopencv_to_generic_vec(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (!PySequence_Check(obj)) { failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name); return false; } const size_t n = static_cast<size_t>(PySequence_Size(obj)); value.resize(n); for (size_t i = 0; i < n; i++) { SafeSeqItem item_wrap(obj, i); if (!pyopencv_to(item_wrap.item, value[i], info)) { failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i); return false; } } return true; } template<> inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<bool>& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (!PySequence_Check(obj)) { failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name); return false; } const size_t n = static_cast<size_t>(PySequence_Size(obj)); value.resize(n); for (size_t i = 0; i < n; i++) { SafeSeqItem item_wrap(obj, i); bool elem{}; if (!pyopencv_to(item_wrap.item, elem, info)) { failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i); return false; } value[i] = elem; } return true; } template <typename Tp> static PyObject* pyopencv_from_generic_vec(const std::vector<Tp>& value) { Py_ssize_t n = static_cast<Py_ssize_t>(value.size()); PySafeObject seq(PyTuple_New(n)); for (Py_ssize_t i = 0; i < n; i++) { PyObject* item = pyopencv_from(value[i]); // If item can't be assigned - PyTuple_SetItem raises exception and returns -1. if (!item || PyTuple_SetItem(seq, i, item) == -1) { return NULL; } } return seq.release(); } template<> inline PyObject* pyopencv_from_generic_vec(const std::vector<bool>& value) { Py_ssize_t n = static_cast<Py_ssize_t>(value.size()); PySafeObject seq(PyTuple_New(n)); for (Py_ssize_t i = 0; i < n; i++) { bool elem = value[i]; PyObject* item = pyopencv_from(elem); // If item can't be assigned - PyTuple_SetItem raises exception and returns -1. if (!item || PyTuple_SetItem(seq, i, item) == -1) { return NULL; } } return seq.release(); } namespace traits { template <bool Value> struct BooleanConstant { static const bool value = Value; typedef BooleanConstant<Value> type; }; typedef BooleanConstant<true> TrueType; typedef BooleanConstant<false> FalseType; template <class T> struct VoidType { typedef void type; }; template <class T, class DType = void> struct IsRepresentableAsMatDataType : FalseType { }; template <class T> struct IsRepresentableAsMatDataType<T, typename VoidType<typename cv::DataType<T>::channel_type>::type> : TrueType { }; // https://github.com/opencv/opencv/issues/20930 template <> struct IsRepresentableAsMatDataType<cv::RotatedRect, void> : FalseType {}; } // namespace traits template <typename Tp> struct pyopencvVecConverter { typedef typename std::vector<Tp>::iterator VecIt; static bool to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info) { if (!PyArray_Check(obj)) { return pyopencv_to_generic_vec(obj, value, info); } // If user passed an array it is possible to make faster conversions in several cases PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(obj); const NPY_TYPES target_type = asNumpyType<Tp>(); const NPY_TYPES source_type = static_cast<NPY_TYPES>(PyArray_TYPE(array_obj)); if (target_type == NPY_OBJECT) { // Non-planar arrays representing objects (e.g. array of N Rect is an array of shape Nx4) have NPY_OBJECT // as their target type. return pyopencv_to_generic_vec(obj, value, info); } if (PyArray_NDIM(array_obj) > 1) { failmsg("Can't parse %dD array as '%s' vector argument", PyArray_NDIM(array_obj), info.name); return false; } if (target_type != source_type) { // Source type requires conversion // Allowed conversions for target type is handled in the corresponding pyopencv_to function return pyopencv_to_generic_vec(obj, value, info); } // For all other cases, all array data can be directly copied to std::vector data // Simple `memcpy` is not possible because NumPy array can reference a slice of the bigger array: // ``` // arr = np.ones((8, 4, 5), dtype=np.int32) // convertible_to_vector_of_int = arr[:, 0, 1] // ``` value.resize(static_cast<size_t>(PyArray_SIZE(array_obj))); const npy_intp item_step = PyArray_STRIDE(array_obj, 0) / PyArray_ITEMSIZE(array_obj); const Tp* data_ptr = static_cast<Tp*>(PyArray_DATA(array_obj)); for (VecIt it = value.begin(); it != value.end(); ++it, data_ptr += item_step) { *it = *data_ptr; } return true; } static PyObject* from(const std::vector<Tp>& value) { if (value.empty()) { return PyTuple_New(0); } return from(value, ::traits::IsRepresentableAsMatDataType<Tp>()); } private: static PyObject* from(const std::vector<Tp>& value, ::traits::FalseType) { // Underlying type is not representable as Mat Data Type return pyopencv_from_generic_vec(value); } static PyObject* from(const std::vector<Tp>& value, ::traits::TrueType) { // Underlying type is representable as Mat Data Type, so faster return type is available typedef cv::DataType<Tp> DType; typedef typename DType::channel_type UnderlyingArrayType; // If Mat is always exposed as NumPy array this code path can be reduced to the following snipped: // Mat src(value); // PyObject* array = pyopencv_from(src); // return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(array)); // This puts unnecessary restrictions on Mat object those might be avoided without losing the performance. // Moreover, this version is a bit faster, because it doesn't create temporary objects with reference counting. const NPY_TYPES target_type = asNumpyType<UnderlyingArrayType>(); const int cols = DType::channels; PyObject* array = NULL; if (cols == 1) { npy_intp dims = static_cast<npy_intp>(value.size()); array = PyArray_SimpleNew(1, &dims, target_type); } else { npy_intp dims[2] = {static_cast<npy_intp>(value.size()), cols}; array = PyArray_SimpleNew(2, dims, target_type); } if(!array) { // NumPy arrays with shape (N, 1) and (N) are not equal, so correct error message should distinguish // them too. cv::String shape; if (cols > 1) { shape = cv::format("(%d x %d)", static_cast<int>(value.size()), cols); } else { shape = cv::format("(%d)", static_cast<int>(value.size())); } const cv::String error_message = cv::format("Can't allocate NumPy array for vector with dtype=%d and shape=%s", static_cast<int>(target_type), shape.c_str()); emit_failmsg(PyExc_MemoryError, error_message.c_str()); return array; } // Fill the array PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(array); UnderlyingArrayType* array_data = static_cast<UnderlyingArrayType*>(PyArray_DATA(array_obj)); // if Tp is representable as Mat DataType, so the following cast is pretty safe... const UnderlyingArrayType* value_data = reinterpret_cast<const UnderlyingArrayType*>(value.data()); memcpy(array_data, value_data, sizeof(UnderlyingArrayType) * value.size() * static_cast<size_t>(cols)); return array; } }; // --- tuple template<std::size_t I = 0, typename... Tp> inline typename std::enable_if<I == sizeof...(Tp), void>::type convert_to_python_tuple(const std::tuple<Tp...>&, PyObject*) { } template<std::size_t I = 0, typename... Tp> inline typename std::enable_if<I < sizeof...(Tp), void>::type convert_to_python_tuple(const std::tuple<Tp...>& cpp_tuple, PyObject* py_tuple) { PyObject* item = pyopencv_from(std::get<I>(cpp_tuple)); if (!item) return; PyTuple_SetItem(py_tuple, I, item); convert_to_python_tuple<I + 1, Tp...>(cpp_tuple, py_tuple); } template<typename... Ts> PyObject* pyopencv_from(const std::tuple<Ts...>& cpp_tuple) { size_t size = sizeof...(Ts); PyObject* py_tuple = PyTuple_New(size); convert_to_python_tuple(cpp_tuple, py_tuple); size_t actual_size = PyTuple_Size(py_tuple); if (actual_size < size) { Py_DECREF(py_tuple); return NULL; } return py_tuple; } #endif // CV2_CONVERT_HPP