/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_CUDA using namespace cvtest; /////////////////////////////////////////////////////////////////////////////////////////////////////// // Integral PARAM_TEST_CASE(Integral, cv::gpu::DeviceInfo, cv::Size, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(Integral, Accuracy) { cv::Mat src = randomMat(size, CV_8UC1); cv::gpu::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_32SC1, useRoi); cv::gpu::integral(loadMat(src, useRoi), dst); cv::Mat dst_gold; cv::integral(src, dst_gold, CV_32S); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Integral, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, WHOLE_SUBMAT)); /////////////////////////////////////////////////////////////////////////////////////////////////////// // HistEven struct HistEven : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(HistEven, Accuracy) { cv::Mat img = readImage("stereobm/aloe-L.png"); ASSERT_FALSE(img.empty()); cv::Mat hsv; cv::cvtColor(img, hsv, CV_BGR2HSV); int hbins = 30; float hranges[] = {0.0f, 180.0f}; std::vector srcs; cv::gpu::split(loadMat(hsv), srcs); cv::gpu::GpuMat hist; cv::gpu::histEven(srcs[0], hist, hbins, (int)hranges[0], (int)hranges[1]); cv::MatND histnd; int histSize[] = {hbins}; const float* ranges[] = {hranges}; int channels[] = {0}; cv::calcHist(&hsv, 1, channels, cv::Mat(), histnd, 1, histSize, ranges); cv::Mat hist_gold = histnd; hist_gold = hist_gold.t(); hist_gold.convertTo(hist_gold, CV_32S); EXPECT_MAT_NEAR(hist_gold, hist, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HistEven, ALL_DEVICES); /////////////////////////////////////////////////////////////////////////////////////////////////////// // CalcHist namespace { void calcHistGold(const cv::Mat& src, cv::Mat& hist) { hist.create(1, 256, CV_32SC1); hist.setTo(cv::Scalar::all(0)); int* hist_row = hist.ptr(); for (int y = 0; y < src.rows; ++y) { const uchar* src_row = src.ptr(y); for (int x = 0; x < src.cols; ++x) ++hist_row[src_row[x]]; } } } PARAM_TEST_CASE(CalcHist, cv::gpu::DeviceInfo, cv::Size) { cv::gpu::DeviceInfo devInfo; cv::Size size; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(CalcHist, Accuracy) { cv::Mat src = randomMat(size, CV_8UC1); cv::gpu::GpuMat hist; cv::gpu::calcHist(loadMat(src), hist); cv::Mat hist_gold; calcHistGold(src, hist_gold); EXPECT_MAT_NEAR(hist_gold, hist, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CalcHist, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES)); /////////////////////////////////////////////////////////////////////////////////////////////////////// // EqualizeHist PARAM_TEST_CASE(EqualizeHist, cv::gpu::DeviceInfo, cv::Size) { cv::gpu::DeviceInfo devInfo; cv::Size size; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(EqualizeHist, Accuracy) { cv::Mat src = randomMat(size, CV_8UC1); cv::gpu::GpuMat dst; cv::gpu::equalizeHist(loadMat(src), dst); cv::Mat dst_gold; cv::equalizeHist(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 3.0); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, EqualizeHist, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES)); /////////////////////////////////////////////////////////////////////////////////////////////////////// // CLAHE namespace { IMPLEMENT_PARAM_CLASS(ClipLimit, double) } PARAM_TEST_CASE(CLAHE, cv::gpu::DeviceInfo, cv::Size, ClipLimit) { cv::gpu::DeviceInfo devInfo; cv::Size size; double clipLimit; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); clipLimit = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(CLAHE, Accuracy) { cv::Mat src = randomMat(size, CV_8UC1); cv::Ptr clahe = cv::gpu::createCLAHE(clipLimit); cv::gpu::GpuMat dst; clahe->apply(loadMat(src), dst); cv::Ptr clahe_gold = cv::createCLAHE(clipLimit); cv::Mat dst_gold; clahe_gold->apply(src, dst_gold); ASSERT_MAT_NEAR(dst_gold, dst, 1.0); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CLAHE, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(0.0, 40.0))); //////////////////////////////////////////////////////////////////////// // ColumnSum PARAM_TEST_CASE(ColumnSum, cv::gpu::DeviceInfo, cv::Size) { cv::gpu::DeviceInfo devInfo; cv::Size size; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(ColumnSum, Accuracy) { cv::Mat src = randomMat(size, CV_32FC1); cv::gpu::GpuMat d_dst; cv::gpu::columnSum(loadMat(src), d_dst); cv::Mat dst(d_dst); for (int j = 0; j < src.cols; ++j) { float gold = src.at(0, j); float res = dst.at(0, j); ASSERT_NEAR(res, gold, 1e-5); } for (int i = 1; i < src.rows; ++i) { for (int j = 0; j < src.cols; ++j) { float gold = src.at(i, j) += src.at(i - 1, j); float res = dst.at(i, j); ASSERT_NEAR(res, gold, 1e-5); } } } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, ColumnSum, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES)); //////////////////////////////////////////////////////// // Canny namespace { IMPLEMENT_PARAM_CLASS(AppertureSize, int); IMPLEMENT_PARAM_CLASS(L2gradient, bool); } PARAM_TEST_CASE(Canny, cv::gpu::DeviceInfo, AppertureSize, L2gradient, UseRoi) { cv::gpu::DeviceInfo devInfo; int apperture_size; bool useL2gradient; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); apperture_size = GET_PARAM(1); useL2gradient = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(Canny, Accuracy) { cv::Mat img = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(img.empty()); double low_thresh = 50.0; double high_thresh = 100.0; if (!supportFeature(devInfo, cv::gpu::SHARED_ATOMICS)) { try { cv::gpu::GpuMat edges; cv::gpu::Canny(loadMat(img), edges, low_thresh, high_thresh, apperture_size, useL2gradient); } catch (const cv::Exception& e) { ASSERT_EQ(CV_StsNotImplemented, e.code); } } else { cv::gpu::GpuMat edges; cv::gpu::Canny(loadMat(img, useRoi), edges, low_thresh, high_thresh, apperture_size, useL2gradient); cv::Mat edges_gold; cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, useL2gradient); EXPECT_MAT_SIMILAR(edges_gold, edges, 2e-2); } } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Canny, testing::Combine( ALL_DEVICES, testing::Values(AppertureSize(3), AppertureSize(5)), testing::Values(L2gradient(false), L2gradient(true)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // MeanShift struct MeanShift : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Mat img; int spatialRad; int colorRad; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); img = readImageType("meanshift/cones.png", CV_8UC4); ASSERT_FALSE(img.empty()); spatialRad = 30; colorRad = 30; } }; GPU_TEST_P(MeanShift, Filtering) { cv::Mat img_template; if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) img_template = readImage("meanshift/con_result.png"); else img_template = readImage("meanshift/con_result_CC1X.png"); ASSERT_FALSE(img_template.empty()); cv::gpu::GpuMat d_dst; cv::gpu::meanShiftFiltering(loadMat(img), d_dst, spatialRad, colorRad); ASSERT_EQ(CV_8UC4, d_dst.type()); cv::Mat dst(d_dst); cv::Mat result; cv::cvtColor(dst, result, CV_BGRA2BGR); EXPECT_MAT_NEAR(img_template, result, 0.0); } GPU_TEST_P(MeanShift, Proc) { cv::FileStorage fs; if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ); else fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ); ASSERT_TRUE(fs.isOpened()); cv::Mat spmap_template; fs["spmap"] >> spmap_template; ASSERT_FALSE(spmap_template.empty()); cv::gpu::GpuMat rmap_filtered; cv::gpu::meanShiftFiltering(loadMat(img), rmap_filtered, spatialRad, colorRad); cv::gpu::GpuMat rmap; cv::gpu::GpuMat spmap; cv::gpu::meanShiftProc(loadMat(img), rmap, spmap, spatialRad, colorRad); ASSERT_EQ(CV_8UC4, rmap.type()); EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0); EXPECT_MAT_NEAR(spmap_template, spmap, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShift, ALL_DEVICES); //////////////////////////////////////////////////////////////////////////////// // MeanShiftSegmentation namespace { IMPLEMENT_PARAM_CLASS(MinSize, int); } PARAM_TEST_CASE(MeanShiftSegmentation, cv::gpu::DeviceInfo, MinSize) { cv::gpu::DeviceInfo devInfo; int minsize; virtual void SetUp() { devInfo = GET_PARAM(0); minsize = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(MeanShiftSegmentation, Regression) { cv::Mat img = readImageType("meanshift/cones.png", CV_8UC4); ASSERT_FALSE(img.empty()); std::ostringstream path; path << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize; if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) path << ".png"; else path << "_CC1X.png"; cv::Mat dst_gold = readImage(path.str()); ASSERT_FALSE(dst_gold.empty()); cv::Mat dst; cv::gpu::meanShiftSegmentation(loadMat(img), dst, 10, 10, minsize); cv::Mat dst_rgb; cv::cvtColor(dst, dst_rgb, CV_BGRA2BGR); EXPECT_MAT_SIMILAR(dst_gold, dst_rgb, 1e-3); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MeanShiftSegmentation, testing::Combine( ALL_DEVICES, testing::Values(MinSize(0), MinSize(4), MinSize(20), MinSize(84), MinSize(340), MinSize(1364)))); //////////////////////////////////////////////////////////////////////////// // Blend namespace { template void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold) { result_gold.create(img1.size(), img1.type()); int cn = img1.channels(); for (int y = 0; y < img1.rows; ++y) { const float* weights1_row = weights1.ptr(y); const float* weights2_row = weights2.ptr(y); const T* img1_row = img1.ptr(y); const T* img2_row = img2.ptr(y); T* result_gold_row = result_gold.ptr(y); for (int x = 0; x < img1.cols * cn; ++x) { float w1 = weights1_row[x / cn]; float w2 = weights2_row[x / cn]; result_gold_row[x] = static_cast((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f)); } } } } PARAM_TEST_CASE(Blend, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(Blend, Accuracy) { int depth = CV_MAT_DEPTH(type); cv::Mat img1 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0); cv::Mat img2 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0); cv::Mat weights1 = randomMat(size, CV_32F, 0, 1); cv::Mat weights2 = randomMat(size, CV_32F, 0, 1); cv::gpu::GpuMat result; cv::gpu::blendLinear(loadMat(img1, useRoi), loadMat(img2, useRoi), loadMat(weights1, useRoi), loadMat(weights2, useRoi), result); cv::Mat result_gold; if (depth == CV_8U) blendLinearGold(img1, img2, weights1, weights2, result_gold); else blendLinearGold(img1, img2, weights1, weights2, result_gold); EXPECT_MAT_NEAR(result_gold, result, CV_MAT_DEPTH(type) == CV_8U ? 1.0 : 1e-5); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Blend, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////// // Convolve namespace { void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false) { // reallocate the output array if needed C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type()); cv::Size dftSize; // compute the size of DFT transform dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1); dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1); // allocate temporary buffers and initialize them with 0s cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0)); cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0)); // copy A and B to the top-left corners of tempA and tempB, respectively cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows)); A.copyTo(roiA); cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows)); B.copyTo(roiB); // now transform the padded A & B in-place; // use "nonzeroRows" hint for faster processing cv::dft(tempA, tempA, 0, A.rows); cv::dft(tempB, tempB, 0, B.rows); // multiply the spectrums; // the function handles packed spectrum representations well cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr); // transform the product back from the frequency domain. // Even though all the result rows will be non-zero, // you need only the first C.rows of them, and thus you // pass nonzeroRows == C.rows cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows); // now copy the result back to C. tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C); } IMPLEMENT_PARAM_CLASS(KSize, int); IMPLEMENT_PARAM_CLASS(Ccorr, bool); } PARAM_TEST_CASE(Convolve, cv::gpu::DeviceInfo, cv::Size, KSize, Ccorr) { cv::gpu::DeviceInfo devInfo; cv::Size size; int ksize; bool ccorr; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); ksize = GET_PARAM(2); ccorr = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(Convolve, Accuracy) { cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0); cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0); cv::gpu::GpuMat dst; cv::gpu::convolve(loadMat(src), loadMat(kernel), dst, ccorr); cv::Mat dst_gold; convolveDFT(src, kernel, dst_gold, ccorr); EXPECT_MAT_NEAR(dst, dst_gold, 1e-1); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Convolve, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(KSize(3), KSize(7), KSize(11), KSize(17), KSize(19), KSize(23), KSize(45)), testing::Values(Ccorr(false), Ccorr(true)))); //////////////////////////////////////////////////////////////////////////////// // MatchTemplate8U CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED) namespace { IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size); } PARAM_TEST_CASE(MatchTemplate8U, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod) { cv::gpu::DeviceInfo devInfo; cv::Size size; cv::Size templ_size; int cn; int method; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); templ_size = GET_PARAM(2); cn = GET_PARAM(3); method = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(MatchTemplate8U, Accuracy) { cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn)); cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn)); cv::gpu::GpuMat dst; cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method); cv::Mat dst_gold; cv::matchTemplate(image, templ, dst_gold, method); EXPECT_MAT_NEAR(dst_gold, dst, templ_size.area() * 1e-1); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))), testing::Values(Channels(1), Channels(3), Channels(4)), TemplateMethod::all())); //////////////////////////////////////////////////////////////////////////////// // MatchTemplate32F PARAM_TEST_CASE(MatchTemplate32F, cv::gpu::DeviceInfo, cv::Size, TemplateSize, Channels, TemplateMethod) { cv::gpu::DeviceInfo devInfo; cv::Size size; cv::Size templ_size; int cn; int method; int n, m, h, w; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); templ_size = GET_PARAM(2); cn = GET_PARAM(3); method = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(MatchTemplate32F, Regression) { cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn)); cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn)); cv::gpu::GpuMat dst; cv::gpu::matchTemplate(loadMat(image), loadMat(templ), dst, method); cv::Mat dst_gold; cv::matchTemplate(image, templ, dst_gold, method); EXPECT_MAT_NEAR(dst_gold, dst, templ_size.area() * 1e-1); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16)), TemplateSize(cv::Size(30, 30))), testing::Values(Channels(1), Channels(3), Channels(4)), testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))); //////////////////////////////////////////////////////////////////////////////// // MatchTemplateBlackSource PARAM_TEST_CASE(MatchTemplateBlackSource, cv::gpu::DeviceInfo, TemplateMethod) { cv::gpu::DeviceInfo devInfo; int method; virtual void SetUp() { devInfo = GET_PARAM(0); method = GET_PARAM(1); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(MatchTemplateBlackSource, Accuracy) { cv::Mat image = readImage("matchtemplate/black.png"); ASSERT_FALSE(image.empty()); cv::Mat pattern = readImage("matchtemplate/cat.png"); ASSERT_FALSE(pattern.empty()); cv::gpu::GpuMat d_dst; cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, method); cv::Mat dst(d_dst); double maxValue; cv::Point maxLoc; cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc); cv::Point maxLocGold = cv::Point(284, 12); ASSERT_EQ(maxLocGold, maxLoc); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplateBlackSource, testing::Combine( ALL_DEVICES, testing::Values(TemplateMethod(cv::TM_CCOEFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED)))); //////////////////////////////////////////////////////////////////////////////// // MatchTemplate_CCOEF_NORMED PARAM_TEST_CASE(MatchTemplate_CCOEF_NORMED, cv::gpu::DeviceInfo, std::pair) { cv::gpu::DeviceInfo devInfo; std::string imageName; std::string patternName; virtual void SetUp() { devInfo = GET_PARAM(0); imageName = GET_PARAM(1).first; patternName = GET_PARAM(1).second; cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(MatchTemplate_CCOEF_NORMED, Accuracy) { cv::Mat image = readImage(imageName); ASSERT_FALSE(image.empty()); cv::Mat pattern = readImage(patternName); ASSERT_FALSE(pattern.empty()); cv::gpu::GpuMat d_dst; cv::gpu::matchTemplate(loadMat(image), loadMat(pattern), d_dst, CV_TM_CCOEFF_NORMED); cv::Mat dst(d_dst); cv::Point minLoc, maxLoc; double minVal, maxVal; cv::minMaxLoc(dst, &minVal, &maxVal, &minLoc, &maxLoc); cv::Mat dstGold; cv::matchTemplate(image, pattern, dstGold, CV_TM_CCOEFF_NORMED); double minValGold, maxValGold; cv::Point minLocGold, maxLocGold; cv::minMaxLoc(dstGold, &minValGold, &maxValGold, &minLocGold, &maxLocGold); ASSERT_EQ(minLocGold, minLoc); ASSERT_EQ(maxLocGold, maxLoc); ASSERT_LE(maxVal, 1.0); ASSERT_GE(minVal, -1.0); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CCOEF_NORMED, testing::Combine( ALL_DEVICES, testing::Values(std::make_pair(std::string("matchtemplate/source-0.png"), std::string("matchtemplate/target-0.png"))))); //////////////////////////////////////////////////////////////////////////////// // MatchTemplate_CanFindBigTemplate struct MatchTemplate_CanFindBigTemplate : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF_NORMED) { cv::Mat scene = readImage("matchtemplate/scene.png"); ASSERT_FALSE(scene.empty()); cv::Mat templ = readImage("matchtemplate/template.png"); ASSERT_FALSE(templ.empty()); cv::gpu::GpuMat d_result; cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, CV_TM_SQDIFF_NORMED); cv::Mat result(d_result); double minVal; cv::Point minLoc; cv::minMaxLoc(result, &minVal, 0, &minLoc, 0); ASSERT_GE(minVal, 0); ASSERT_LT(minVal, 1e-3); ASSERT_EQ(344, minLoc.x); ASSERT_EQ(0, minLoc.y); } GPU_TEST_P(MatchTemplate_CanFindBigTemplate, SQDIFF) { cv::Mat scene = readImage("matchtemplate/scene.png"); ASSERT_FALSE(scene.empty()); cv::Mat templ = readImage("matchtemplate/template.png"); ASSERT_FALSE(templ.empty()); cv::gpu::GpuMat d_result; cv::gpu::matchTemplate(loadMat(scene), loadMat(templ), d_result, CV_TM_SQDIFF); cv::Mat result(d_result); double minVal; cv::Point minLoc; cv::minMaxLoc(result, &minVal, 0, &minLoc, 0); ASSERT_GE(minVal, 0); ASSERT_EQ(344, minLoc.x); ASSERT_EQ(0, minLoc.y); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate_CanFindBigTemplate, ALL_DEVICES); //////////////////////////////////////////////////////////////////////////// // MulSpectrums CV_FLAGS(DftFlags, 0, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT) PARAM_TEST_CASE(MulSpectrums, cv::gpu::DeviceInfo, cv::Size, DftFlags) { cv::gpu::DeviceInfo devInfo; cv::Size size; int flag; cv::Mat a, b; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); flag = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); a = randomMat(size, CV_32FC2); b = randomMat(size, CV_32FC2); } }; GPU_TEST_P(MulSpectrums, Simple) { cv::gpu::GpuMat c; cv::gpu::mulSpectrums(loadMat(a), loadMat(b), c, flag, false); cv::Mat c_gold; cv::mulSpectrums(a, b, c_gold, flag, false); EXPECT_MAT_NEAR(c_gold, c, 1e-2); } GPU_TEST_P(MulSpectrums, Scaled) { float scale = 1.f / size.area(); cv::gpu::GpuMat c; cv::gpu::mulAndScaleSpectrums(loadMat(a), loadMat(b), c, flag, scale, false); cv::Mat c_gold; cv::mulSpectrums(a, b, c_gold, flag, false); c_gold.convertTo(c_gold, c_gold.type(), scale); EXPECT_MAT_NEAR(c_gold, c, 1e-2); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MulSpectrums, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS)))); //////////////////////////////////////////////////////////////////////////// // Dft struct Dft : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; namespace { void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace) { SCOPED_TRACE(hint); cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0); cv::Mat b_gold; cv::dft(a, b_gold, flags); cv::gpu::GpuMat d_b; cv::gpu::GpuMat d_b_data; if (inplace) { d_b_data.create(1, a.size().area(), CV_32FC2); d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); } cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), flags); EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr()); ASSERT_EQ(CV_32F, d_b.depth()); ASSERT_EQ(2, d_b.channels()); EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4); } } GPU_TEST_P(Dft, C2C) { int cols = randomInt(2, 100); int rows = randomInt(2, 100); for (int i = 0; i < 2; ++i) { bool inplace = i != 0; testC2C("no flags", cols, rows, 0, inplace); testC2C("no flags 0 1", cols, rows + 1, 0, inplace); testC2C("no flags 1 0", cols, rows + 1, 0, inplace); testC2C("no flags 1 1", cols + 1, rows, 0, inplace); testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace); testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace); testC2C("single col", 1, rows, 0, inplace); testC2C("single row", cols, 1, 0, inplace); testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace); testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace); testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace); testC2C("size 1 2", 1, 2, 0, inplace); testC2C("size 2 1", 2, 1, 0, inplace); } } namespace { void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace) { SCOPED_TRACE(hint); cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0); cv::gpu::GpuMat d_b, d_c; cv::gpu::GpuMat d_b_data, d_c_data; if (inplace) { if (a.cols == 1) { d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2); d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); } else { d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2); d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize()); } d_c_data.create(1, a.size().area(), CV_32F); d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize()); } cv::gpu::dft(loadMat(a), d_b, cv::Size(cols, rows), 0); cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE); EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr()); EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr()); ASSERT_EQ(CV_32F, d_c.depth()); ASSERT_EQ(1, d_c.channels()); cv::Mat c(d_c); EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5); } } GPU_TEST_P(Dft, R2CThenC2R) { int cols = randomInt(2, 100); int rows = randomInt(2, 100); testR2CThenC2R("sanity", cols, rows, false); testR2CThenC2R("sanity 0 1", cols, rows + 1, false); testR2CThenC2R("sanity 1 0", cols + 1, rows, false); testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false); testR2CThenC2R("single col", 1, rows, false); testR2CThenC2R("single col 1", 1, rows + 1, false); testR2CThenC2R("single row", cols, 1, false); testR2CThenC2R("single row 1", cols + 1, 1, false); testR2CThenC2R("sanity", cols, rows, true); testR2CThenC2R("sanity 0 1", cols, rows + 1, true); testR2CThenC2R("sanity 1 0", cols + 1, rows, true); testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true); testR2CThenC2R("single row", cols, 1, true); testR2CThenC2R("single row 1", cols + 1, 1, true); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Dft, ALL_DEVICES); /////////////////////////////////////////////////////////////////////////////////////////////////////// // CornerHarris namespace { IMPLEMENT_PARAM_CLASS(BlockSize, int); IMPLEMENT_PARAM_CLASS(ApertureSize, int); } PARAM_TEST_CASE(CornerHarris, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize) { cv::gpu::DeviceInfo devInfo; int type; int borderType; int blockSize; int apertureSize; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); borderType = GET_PARAM(2); blockSize = GET_PARAM(3); apertureSize = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(CornerHarris, Accuracy) { cv::Mat src = readImageType("stereobm/aloe-L.png", type); ASSERT_FALSE(src.empty()); double k = randomDouble(0.1, 0.9); cv::gpu::GpuMat dst; cv::gpu::cornerHarris(loadMat(src), dst, blockSize, apertureSize, k, borderType); cv::Mat dst_gold; cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderType); EXPECT_MAT_NEAR(dst_gold, dst, 0.02); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerHarris, testing::Combine( ALL_DEVICES, testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)), testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT)), testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)), testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7)))); /////////////////////////////////////////////////////////////////////////////////////////////////////// // cornerMinEigen PARAM_TEST_CASE(CornerMinEigen, cv::gpu::DeviceInfo, MatType, BorderType, BlockSize, ApertureSize) { cv::gpu::DeviceInfo devInfo; int type; int borderType; int blockSize; int apertureSize; virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); borderType = GET_PARAM(2); blockSize = GET_PARAM(3); apertureSize = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(CornerMinEigen, Accuracy) { cv::Mat src = readImageType("stereobm/aloe-L.png", type); ASSERT_FALSE(src.empty()); cv::gpu::GpuMat dst; cv::gpu::cornerMinEigenVal(loadMat(src), dst, blockSize, apertureSize, borderType); cv::Mat dst_gold; cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderType); EXPECT_MAT_NEAR(dst_gold, dst, 0.02); } INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine( ALL_DEVICES, testing::Values(MatType(CV_8UC1), MatType(CV_32FC1)), testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT)), testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)), testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7)))); #endif // HAVE_CUDA