/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/imgproc/imgproc_c.h" using namespace cv; using namespace std; class CV_AccumBaseTest : public cvtest::ArrayTest { public: CV_AccumBaseTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); double get_success_error_level( int test_case_idx, int i, int j ); double alpha; }; CV_AccumBaseTest::CV_AccumBaseTest() { test_array[INPUT].push_back(NULL); test_array[INPUT_OUTPUT].push_back(NULL); test_array[REF_INPUT_OUTPUT].push_back(NULL); test_array[MASK].push_back(NULL); optional_mask = true; element_wise_relative_error = false; } // ctor void CV_AccumBaseTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); int depth = cvtest::randInt(rng) % 3, cn = cvtest::randInt(rng) & 1 ? 3 : 1; int accdepth = std::max((int)(cvtest::randInt(rng) % 2 + 1), depth); int i, input_count = (int)test_array[INPUT].size(); cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); depth = depth == 0 ? CV_8U : depth == 1 ? CV_32F : CV_64F; accdepth = accdepth == 1 ? CV_32F : CV_64F; accdepth = MAX(accdepth, depth); for( i = 0; i < input_count; i++ ) types[INPUT][i] = CV_MAKETYPE(depth,cn); types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(accdepth,cn); alpha = cvtest::randReal(rng); } double CV_AccumBaseTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { return test_mat[INPUT_OUTPUT][0].depth() < CV_64F || test_mat[INPUT][0].depth() == CV_32F ? FLT_EPSILON*100 : DBL_EPSILON*1000; } /// acc class CV_AccTest : public CV_AccumBaseTest { public: CV_AccTest() { } protected: void run_func(); void prepare_to_validation( int ); }; void CV_AccTest::run_func(void) { cvAcc( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], test_array[MASK][0] ); } void CV_AccTest::prepare_to_validation( int ) { const Mat& src = test_mat[INPUT][0]; Mat& dst = test_mat[REF_INPUT_OUTPUT][0]; const Mat& mask = test_array[MASK][0] ? test_mat[MASK][0] : Mat(); Mat temp; cvtest::add( src, 1, dst, 1, cvScalarAll(0.), temp, dst.type() ); cvtest::copy( temp, dst, mask ); } /// square acc class CV_SquareAccTest : public CV_AccumBaseTest { public: CV_SquareAccTest(); protected: void run_func(); void prepare_to_validation( int ); }; CV_SquareAccTest::CV_SquareAccTest() { } void CV_SquareAccTest::run_func() { cvSquareAcc( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], test_array[MASK][0] ); } void CV_SquareAccTest::prepare_to_validation( int ) { const Mat& src = test_mat[INPUT][0]; Mat& dst = test_mat[REF_INPUT_OUTPUT][0]; const Mat& mask = test_array[MASK][0] ? test_mat[MASK][0] : Mat(); Mat temp; cvtest::convert( src, temp, dst.type() ); cvtest::multiply( temp, temp, temp, 1 ); cvtest::add( temp, 1, dst, 1, cvScalarAll(0.), temp, dst.depth() ); cvtest::copy( temp, dst, mask ); } /// multiply acc class CV_MultiplyAccTest : public CV_AccumBaseTest { public: CV_MultiplyAccTest(); protected: void run_func(); void prepare_to_validation( int ); }; CV_MultiplyAccTest::CV_MultiplyAccTest() { test_array[INPUT].push_back(NULL); } void CV_MultiplyAccTest::run_func() { cvMultiplyAcc( test_array[INPUT][0], test_array[INPUT][1], test_array[INPUT_OUTPUT][0], test_array[MASK][0] ); } void CV_MultiplyAccTest::prepare_to_validation( int ) { const Mat& src1 = test_mat[INPUT][0]; const Mat& src2 = test_mat[INPUT][1]; Mat& dst = test_mat[REF_INPUT_OUTPUT][0]; const Mat& mask = test_array[MASK][0] ? test_mat[MASK][0] : Mat(); Mat temp1, temp2; cvtest::convert( src1, temp1, dst.type() ); cvtest::convert( src2, temp2, dst.type() ); cvtest::multiply( temp1, temp2, temp1, 1 ); cvtest::add( temp1, 1, dst, 1, cvScalarAll(0.), temp1, dst.depth() ); cvtest::copy( temp1, dst, mask ); } /// running average class CV_RunningAvgTest : public CV_AccumBaseTest { public: CV_RunningAvgTest(); protected: void run_func(); void prepare_to_validation( int ); }; CV_RunningAvgTest::CV_RunningAvgTest() { } void CV_RunningAvgTest::run_func() { cvRunningAvg( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], alpha, test_array[MASK][0] ); } void CV_RunningAvgTest::prepare_to_validation( int ) { const Mat& src = test_mat[INPUT][0]; Mat& dst = test_mat[REF_INPUT_OUTPUT][0]; Mat temp; const Mat& mask = test_array[MASK][0] ? test_mat[MASK][0] : Mat(); double a[1], b[1]; int accdepth = test_mat[INPUT_OUTPUT][0].depth(); CvMat A = cvMat(1,1,accdepth,a), B = cvMat(1,1,accdepth,b); cvSetReal1D( &A, 0, alpha); cvSetReal1D( &B, 0, 1 - cvGetReal1D(&A, 0)); cvtest::convert( src, temp, dst.type() ); cvtest::add( src, cvGetReal1D(&A, 0), dst, cvGetReal1D(&B, 0), cvScalarAll(0.), temp, temp.depth() ); cvtest::copy( temp, dst, mask ); } TEST(Video_Acc, accuracy) { CV_AccTest test; test.safe_run(); } TEST(Video_AccSquared, accuracy) { CV_SquareAccTest test; test.safe_run(); } TEST(Video_AccProduct, accuracy) { CV_MultiplyAccTest test; test.safe_run(); } TEST(Video_RunningAvg, accuracy) { CV_RunningAvgTest test; test.safe_run(); }