/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Nghia Ho, nghiaho12@yahoo.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of OpenCV Foundation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the OpenCV Foundation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { #define ACCURACY 0.00001 // See pics/intersection.png for the scenarios we are testing // Test the following scenarios: // 1 - no intersection // 2 - partial intersection, rectangle translated // 3 - partial intersection, rectangle rotated 45 degree on the corner, forms a triangle intersection // 4 - full intersection, rectangles of same size directly on top of each other // 5 - partial intersection, rectangle on top rotated 45 degrees // 6 - partial intersection, rectangle on top of different size // 7 - full intersection, rectangle fully enclosed in the other // 8 - partial intersection, rectangle corner just touching. point contact // 9 - partial intersetion. rectangle side by side, line contact static void compare(const std::vector& test, const std::vector& target) { ASSERT_EQ(test.size(), target.size()); ASSERT_TRUE(test.size() < 4 || isContourConvex(test)); ASSERT_TRUE(target.size() < 4 || isContourConvex(target)); for( size_t i = 0; i < test.size(); i++ ) { double r = sqrt(normL2Sqr(test[i] - target[i])); ASSERT_LT(r, ACCURACY); } } TEST(Imgproc_RotatedRectangleIntersection, accuracy_1) { // no intersection RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 12.0f); RotatedRect rect2(Point2f(10, 10), Size2f(2, 2), 34.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_NONE); CV_Assert(vertices.empty()); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_2) { // partial intersection, rectangles translated RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f); RotatedRect rect2(Point2f(1, 1), Size2f(2, 2), 0.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); vector targetVertices(4); targetVertices[0] = Point2f(1.0f, 0.0f); targetVertices[1] = Point2f(1.0f, 1.0f); targetVertices[2] = Point2f(0.0f, 1.0f); targetVertices[3] = Point2f(0.0f, 0.0f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_3) { // partial intersection, rectangles rotated 45 degree on the corner, forms a triangle intersection RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f); RotatedRect rect2(Point2f(1, 1), Size2f(sqrt(2.0f), 20), 45.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); vector targetVertices(3); targetVertices[0] = Point2f(1.0f, 0.0f); targetVertices[1] = Point2f(1.0f, 1.0f); targetVertices[2] = Point2f(0.0f, 1.0f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_4) { // full intersection, rectangles of same size directly on top of each other RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f); RotatedRect rect2(Point2f(0, 0), Size2f(2, 2), 0.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_FULL); vector targetVertices(4); targetVertices[0] = Point2f(-1.0f, 1.0f); targetVertices[1] = Point2f(-1.0f, -1.0f); targetVertices[2] = Point2f(1.0f, -1.0f); targetVertices[3] = Point2f(1.0f, 1.0f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_5) { // partial intersection, rectangle on top rotated 45 degrees RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f); RotatedRect rect2(Point2f(0, 0), Size2f(2, 2), 45.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); vector targetVertices(8); targetVertices[0] = Point2f(-1.0f, -0.414214f); targetVertices[1] = Point2f(-0.414214f, -1.0f); targetVertices[2] = Point2f(0.414214f, -1.0f); targetVertices[3] = Point2f(1.0f, -0.414214f); targetVertices[4] = Point2f(1.0f, 0.414214f); targetVertices[5] = Point2f(0.414214f, 1.0f); targetVertices[6] = Point2f(-0.414214f, 1.0f); targetVertices[7] = Point2f(-1.0f, 0.414214f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_6) { // 6 - partial intersection, rectangle on top of different size RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f); RotatedRect rect2(Point2f(0, 0), Size2f(2, 10), 0.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); vector targetVertices(4); targetVertices[0] = Point2f(-1.0f, -1.0f); targetVertices[1] = Point2f(1.0f, -1.0f); targetVertices[2] = Point2f(1.0f, 1.0f); targetVertices[3] = Point2f(-1.0f, 1.0f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_7) { // full intersection, rectangle fully enclosed in the other RotatedRect rect1(Point2f(0, 0), Size2f(12.34f, 56.78f), 0.0f); RotatedRect rect2(Point2f(0, 0), Size2f(2, 2), 0.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_FULL); vector targetVertices(4); targetVertices[0] = Point2f(-1.0f, 1.0f); targetVertices[1] = Point2f(-1.0f, -1.0f); targetVertices[2] = Point2f(1.0f, -1.0f); targetVertices[3] = Point2f(1.0f, 1.0f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_8) { // intersection by a single vertex RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f); RotatedRect rect2(Point2f(2, 2), Size2f(2, 2), 0.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); compare(vertices, vector(1, Point2f(1.0f, 1.0f))); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_9) { // full intersection, rectangle fully enclosed in the other RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f); RotatedRect rect2(Point2f(2, 0), Size2f(2, 123.45f), 0.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); vector targetVertices(2); targetVertices[0] = Point2f(1.0f, -1.0f); targetVertices[1] = Point2f(1.0f, 1.0f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_10) { // three points of rect2 are inside rect1. RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f); RotatedRect rect2(Point2f(0, 0.5), Size2f(1, 1), 45.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); vector targetVertices(5); targetVertices[0] = Point2f(0.207107f, 1.0f); targetVertices[1] = Point2f(-0.207107f, 1.0f); targetVertices[2] = Point2f(-0.707107f, 0.5f); targetVertices[3] = Point2f(0.0f, -0.207107f); targetVertices[4] = Point2f(0.707107f, 0.5f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_11) { RotatedRect rect1(Point2f(0, 0), Size2f(4, 2), 0.0f); RotatedRect rect2(Point2f(0, 0), Size2f(2, 2), -45.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); vector targetVertices(6); targetVertices[0] = Point2f(-0.414214f, -1.0f); targetVertices[1] = Point2f(0.414213f, -1.0f); targetVertices[2] = Point2f(1.41421f, 0.0f); targetVertices[3] = Point2f(0.414214f, 1.0f); targetVertices[4] = Point2f(-0.414213f, 1.0f); targetVertices[5] = Point2f(-1.41421f, 0.0f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_12) { RotatedRect rect1(Point2f(0, 0), Size2f(2, 2), 0.0f); RotatedRect rect2(Point2f(0, 1), Size2f(1, 1), 0.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); vector targetVertices(4); targetVertices[0] = Point2f(-0.5f, 1.0f); targetVertices[1] = Point2f(-0.5f, 0.5f); targetVertices[2] = Point2f(0.5f, 0.5f); targetVertices[3] = Point2f(0.5f, 1.0f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_13) { RotatedRect rect1(Point2f(0, 0), Size2f(1, 3), 0.0f); RotatedRect rect2(Point2f(0, 1), Size2f(3, 1), 0.0f); vector vertices; int ret = rotatedRectangleIntersection(rect1, rect2, vertices); CV_Assert(ret == INTERSECT_PARTIAL); vector targetVertices(4); targetVertices[0] = Point2f(-0.5f, 0.5f); targetVertices[1] = Point2f(0.5f, 0.5f); targetVertices[2] = Point2f(0.5f, 1.5f); targetVertices[3] = Point2f(-0.5f, 1.5f); compare(vertices, targetVertices); } TEST(Imgproc_RotatedRectangleIntersection, accuracy_14) { const int kNumTests = 100; const float kWidth = 5; const float kHeight = 5; RotatedRect rects[2]; std::vector inter; cv::RNG& rng = cv::theRNG(); for (int i = 0; i < kNumTests; ++i) { for (int j = 0; j < 2; ++j) { rects[j].center = Point2f(rng.uniform(0.0f, kWidth), rng.uniform(0.0f, kHeight)); rects[j].size = Size2f(rng.uniform(1.0f, kWidth), rng.uniform(1.0f, kHeight)); rects[j].angle = rng.uniform(0.0f, 360.0f); } int res = rotatedRectangleIntersection(rects[0], rects[1], inter); EXPECT_TRUE(res == INTERSECT_NONE || res == INTERSECT_PARTIAL || res == INTERSECT_FULL) << res; ASSERT_TRUE(inter.size() < 4 || isContourConvex(inter)) << inter; } } TEST(Imgproc_RotatedRectangleIntersection, regression_12221_1) { RotatedRect r1( Point2f(259.65081787109375, 51.58895492553711), Size2f(5487.8779296875, 233.8921661376953), -29.488616943359375); RotatedRect r2( Point2f(293.70465087890625, 112.10154724121094), Size2f(5487.8896484375, 234.87368774414062), -31.27001953125); std::vector intersections; int interType = cv::rotatedRectangleIntersection(r1, r2, intersections); EXPECT_EQ(INTERSECT_PARTIAL, interType); EXPECT_LE(intersections.size(), (size_t)8); } TEST(Imgproc_RotatedRectangleIntersection, regression_12221_2) { RotatedRect r1( Point2f(239.78500366210938, 515.72021484375), Size2f(70.23420715332031, 39.74684524536133), -42.86162567138672); RotatedRect r2( Point2f(242.4205322265625, 510.1195373535156), Size2f(66.85948944091797, 61.46455383300781), -9.840961456298828); std::vector intersections; int interType = cv::rotatedRectangleIntersection(r1, r2, intersections); EXPECT_EQ(INTERSECT_PARTIAL, interType); EXPECT_LE(intersections.size(), (size_t)8); } }} // namespace