#! /usr/bin/env python print "OpenCV Python version of lkdemo" import sys # import the necessary things for OpenCV import cv ############################################################################# # some "constants" win_size = 10 MAX_COUNT = 500 ############################################################################# # some "global" variables image = None pt = None add_remove_pt = False flags = 0 night_mode = False need_to_init = False ############################################################################# # the mouse callback # the callback on the trackbar def on_mouse (event, x, y, flags, param): # we will use the global pt and add_remove_pt global pt global add_remove_pt if image is None: # not initialized, so skip return if image.origin != 0: # different origin y = image.height - y if event == cv.CV_EVENT_LBUTTONDOWN: # user has click, so memorize it pt = (x, y) add_remove_pt = True ############################################################################# # so, here is the main part of the program if __name__ == '__main__': frames = sys.argv[1:] if frames == []: print "usage lkdemo.py " sys.exit(1) # display a small howto use it print "Hot keys: \n" \ "\tESC - quit the program\n" \ "\tr - auto-initialize tracking\n" \ "\tc - delete all the points\n" \ "\tn - switch the \"night\" mode on/off\n" \ "\tSPACE - next frame\n" \ "To add/remove a feature point click it\n" # first, create the necessary windows cv.NamedWindow ('LkDemo', cv.CV_WINDOW_AUTOSIZE) # register the mouse callback cv.SetMouseCallback ('LkDemo', on_mouse, None) fc = 0 while 1: # do forever frame = cv.LoadImage(frames[fc]) if image is None: # create the images we need image = cv.CreateImage (cv.GetSize (frame), 8, 3) image.origin = frame.origin grey = cv.CreateImage (cv.GetSize (frame), 8, 1) prev_grey = cv.CreateImage (cv.GetSize (frame), 8, 1) pyramid = cv.CreateImage (cv.GetSize (frame), 8, 1) prev_pyramid = cv.CreateImage (cv.GetSize (frame), 8, 1) features = [] # copy the frame, so we can draw on it cv.Copy (frame, image) # create a grey version of the image cv.CvtColor (image, grey, cv.CV_BGR2GRAY) if night_mode: # night mode: only display the points cv.SetZero (image) if need_to_init: # we want to search all the good points # create the wanted images eig = cv.CreateImage (cv.GetSize (grey), 32, 1) temp = cv.CreateImage (cv.GetSize (grey), 32, 1) # the default parameters quality = 0.01 min_distance = 10 # search the good points features = cv.GoodFeaturesToTrack ( grey, eig, temp, MAX_COUNT, quality, min_distance, None, 3, 0, 0.04) # refine the corner locations features = cv.FindCornerSubPix ( grey, features, (win_size, win_size), (-1, -1), (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03)) elif features != []: # we have points, so display them # calculate the optical flow features, status, track_error = cv.CalcOpticalFlowPyrLK ( prev_grey, grey, prev_pyramid, pyramid, features, (win_size, win_size), 3, (cv.CV_TERMCRIT_ITER|cv.CV_TERMCRIT_EPS, 20, 0.03), flags) # set back the points we keep features = [ p for (st,p) in zip(status, features) if st] if add_remove_pt: # we have a point to add, so see if it is close to # another one. If yes, don't use it def ptptdist(p0, p1): dx = p0[0] - p1[0] dy = p0[1] - p1[1] return dx**2 + dy**2 if min([ ptptdist(pt, p) for p in features ]) < 25: # too close add_remove_pt = 0 # draw the points as green circles for the_point in features: cv.Circle (image, (int(the_point[0]), int(the_point[1])), 3, (0, 255, 0, 0), -1, 8, 0) if add_remove_pt: # we want to add a point # refine this corner location and append it to 'features' features += cv.FindCornerSubPix ( grey, [pt], (win_size, win_size), (-1, -1), (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03)) # we are no longer in "add_remove_pt" mode add_remove_pt = False # swapping prev_grey, grey = grey, prev_grey prev_pyramid, pyramid = pyramid, prev_pyramid need_to_init = False # we can now display the image cv.ShowImage ('LkDemo', image) # handle events c = cv.WaitKey(10) % 0x100 if c == 27: # user has press the ESC key, so exit break # processing depending on the character if 32 <= c and c < 128: cc = chr(c).lower() if cc == 'r': need_to_init = True elif cc == 'c': features = [] elif cc == 'n': night_mode = not night_mode elif cc == ' ': fc = (fc + 1) % len(frames)