/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" CV_IMPL void cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* corners, int count, CvSize win, CvSize zeroZone, CvTermCriteria criteria ) { cv::AutoBuffer buffer; const int MAX_ITERS = 100; const float drv_x[] = { -1.f, 0.f, 1.f }; const float drv_y[] = { 0.f, 0.5f, 0.f }; float *maskX; float *maskY; float *mask; float *src_buffer; float *gx_buffer; float *gy_buffer; int win_w = win.width * 2 + 1, win_h = win.height * 2 + 1; int win_rect_size = (win_w + 4) * (win_h + 4); double coeff; CvSize size, src_buf_size; int i, j, k, pt_i; int max_iters = 10; double eps = 0; CvMat stub, *src = (CvMat*)srcarr; src = cvGetMat( srcarr, &stub ); if( CV_MAT_TYPE( src->type ) != CV_8UC1 ) CV_Error( CV_StsBadMask, "" ); if( !corners ) CV_Error( CV_StsNullPtr, "" ); if( count < 0 ) CV_Error( CV_StsBadSize, "" ); if( count == 0 ) return; if( win.width <= 0 || win.height <= 0 ) CV_Error( CV_StsBadSize, "" ); size = cvGetMatSize( src ); if( size.width < win_w + 4 || size.height < win_h + 4 ) CV_Error( CV_StsBadSize, "" ); /* initialize variables, controlling loop termination */ switch( criteria.type ) { case CV_TERMCRIT_ITER: eps = 0.f; max_iters = criteria.max_iter; break; case CV_TERMCRIT_EPS: eps = criteria.epsilon; max_iters = MAX_ITERS; break; case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS: eps = criteria.epsilon; max_iters = criteria.max_iter; break; default: assert( 0 ); CV_Error( CV_StsBadFlag, "" ); } eps = MAX( eps, 0 ); eps *= eps; /* use square of error in comparsion operations. */ max_iters = MAX( max_iters, 1 ); max_iters = MIN( max_iters, MAX_ITERS ); buffer.allocate( win_rect_size * 5 + win_w + win_h + 32 ); /* assign pointers */ maskX = buffer; maskY = maskX + win_w + 4; mask = maskY + win_h + 4; src_buffer = mask + win_w * win_h; gx_buffer = src_buffer + win_rect_size; gy_buffer = gx_buffer + win_rect_size; coeff = 1. / (win.width * win.width); /* calculate mask */ for( i = -win.width, k = 0; i <= win.width; i++, k++ ) { maskX[k] = (float)exp( -i * i * coeff ); } if( win.width == win.height ) { maskY = maskX; } else { coeff = 1. / (win.height * win.height); for( i = -win.height, k = 0; i <= win.height; i++, k++ ) { maskY[k] = (float) exp( -i * i * coeff ); } } for( i = 0; i < win_h; i++ ) { for( j = 0; j < win_w; j++ ) { mask[i * win_w + j] = maskX[j] * maskY[i]; } } /* make zero_zone */ if( zeroZone.width >= 0 && zeroZone.height >= 0 && zeroZone.width * 2 + 1 < win_w && zeroZone.height * 2 + 1 < win_h ) { for( i = win.height - zeroZone.height; i <= win.height + zeroZone.height; i++ ) { for( j = win.width - zeroZone.width; j <= win.width + zeroZone.width; j++ ) { mask[i * win_w + j] = 0; } } } /* set sizes of image rectangles, used in convolutions */ src_buf_size.width = win_w + 2; src_buf_size.height = win_h + 2; /* do optimization loop for all the points */ for( pt_i = 0; pt_i < count; pt_i++ ) { CvPoint2D32f cT = corners[pt_i], cI = cT; int iter = 0; double err; do { CvPoint2D32f cI2; double a, b, c, bb1, bb2; IPPI_CALL( icvGetRectSubPix_8u32f_C1R( (uchar*)src->data.ptr, src->step, size, src_buffer, (win_w + 2) * sizeof( src_buffer[0] ), cvSize( win_w + 2, win_h + 2 ), cI )); /* calc derivatives */ icvSepConvSmall3_32f( src_buffer, src_buf_size.width * sizeof(src_buffer[0]), gx_buffer, win_w * sizeof(gx_buffer[0]), src_buf_size, drv_x, drv_y, buffer ); icvSepConvSmall3_32f( src_buffer, src_buf_size.width * sizeof(src_buffer[0]), gy_buffer, win_w * sizeof(gy_buffer[0]), src_buf_size, drv_y, drv_x, buffer ); a = b = c = bb1 = bb2 = 0; /* process gradient */ for( i = 0, k = 0; i < win_h; i++ ) { double py = i - win.height; for( j = 0; j < win_w; j++, k++ ) { double m = mask[k]; double tgx = gx_buffer[k]; double tgy = gy_buffer[k]; double gxx = tgx * tgx * m; double gxy = tgx * tgy * m; double gyy = tgy * tgy * m; double px = j - win.width; a += gxx; b += gxy; c += gyy; bb1 += gxx * px + gxy * py; bb2 += gxy * px + gyy * py; } } { double A[4]; double InvA[4]; CvMat matA, matInvA; A[0] = a; A[1] = A[2] = b; A[3] = c; cvInitMatHeader( &matA, 2, 2, CV_64F, A ); cvInitMatHeader( &matInvA, 2, 2, CV_64FC1, InvA ); cvInvert( &matA, &matInvA, CV_SVD ); cI2.x = (float)(cI.x + InvA[0]*bb1 + InvA[1]*bb2); cI2.y = (float)(cI.y + InvA[2]*bb1 + InvA[3]*bb2); } err = (cI2.x - cI.x) * (cI2.x - cI.x) + (cI2.y - cI.y) * (cI2.y - cI.y); cI = cI2; } while( ++iter < max_iters && err > eps ); /* if new point is too far from initial, it means poor convergence. leave initial point as the result */ if( fabs( cI.x - cT.x ) > win.width || fabs( cI.y - cT.y ) > win.height ) { cI = cT; } corners[pt_i] = cI; /* store result */ } } void cv::cornerSubPix( InputArray _image, InputOutputArray _corners, Size winSize, Size zeroZone, TermCriteria criteria ) { Mat corners = _corners.getMat(); int ncorners = corners.checkVector(2); CV_Assert( ncorners >= 0 && corners.depth() == CV_32F ); Mat image = _image.getMat(); CvMat c_image = image; cvFindCornerSubPix( &c_image, (CvPoint2D32f*)corners.data, ncorners, winSize, zeroZone, criteria ); } /* End of file. */