/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include namespace opencv_test { namespace { class CV_FindContourTest : public cvtest::BaseTest { public: enum { NUM_IMG = 4 }; CV_FindContourTest(); ~CV_FindContourTest(); void clear(); protected: int read_params( CvFileStorage* fs ); int prepare_test_case( int test_case_idx ); int validate_test_results( int test_case_idx ); void run_func(); int min_blob_size, max_blob_size; int blob_count, max_log_blob_count; int retr_mode, approx_method; int min_log_img_width, max_log_img_width; int min_log_img_height, max_log_img_height; Size img_size; int count, count2; IplImage* img[NUM_IMG]; CvMemStorage* storage; CvSeq *contours, *contours2, *chain; static const bool useVeryWideImages = #if SIZE_MAX <= 0xffffffff // 32-bit: don't even try the very wide images false #else // 64-bit: test with very wide images true #endif ; }; CV_FindContourTest::CV_FindContourTest() { int i; test_case_count = useVeryWideImages ? 10 : 300; min_blob_size = 1; max_blob_size = 50; max_log_blob_count = 10; min_log_img_width = useVeryWideImages ? 17 : 3; max_log_img_width = useVeryWideImages ? 17 : 10; min_log_img_height = 3; max_log_img_height = 10; for( i = 0; i < NUM_IMG; i++ ) img[i] = 0; storage = 0; } CV_FindContourTest::~CV_FindContourTest() { clear(); } void CV_FindContourTest::clear() { int i; cvtest::BaseTest::clear(); for( i = 0; i < NUM_IMG; i++ ) cvReleaseImage( &img[i] ); cvReleaseMemStorage( &storage ); } int CV_FindContourTest::read_params( CvFileStorage* fs ) { int t; int code = cvtest::BaseTest::read_params( fs ); if( code < 0 ) return code; min_blob_size = cvReadInt( find_param( fs, "min_blob_size" ), min_blob_size ); max_blob_size = cvReadInt( find_param( fs, "max_blob_size" ), max_blob_size ); max_log_blob_count = cvReadInt( find_param( fs, "max_log_blob_count" ), max_log_blob_count ); min_log_img_width = cvReadInt( find_param( fs, "min_log_img_width" ), min_log_img_width ); max_log_img_width = cvReadInt( find_param( fs, "max_log_img_width" ), max_log_img_width ); min_log_img_height = cvReadInt( find_param( fs, "min_log_img_height"), min_log_img_height ); max_log_img_height = cvReadInt( find_param( fs, "max_log_img_height"), max_log_img_height ); min_blob_size = cvtest::clipInt( min_blob_size, 1, 100 ); max_blob_size = cvtest::clipInt( max_blob_size, 1, 100 ); if( min_blob_size > max_blob_size ) CV_SWAP( min_blob_size, max_blob_size, t ); max_log_blob_count = cvtest::clipInt( max_log_blob_count, 1, 10 ); min_log_img_width = cvtest::clipInt( min_log_img_width, 1, useVeryWideImages ? 17 : 10 ); min_log_img_width = cvtest::clipInt( max_log_img_width, 1, useVeryWideImages ? 17 : 10 ); min_log_img_height = cvtest::clipInt( min_log_img_height, 1, 10 ); min_log_img_height = cvtest::clipInt( max_log_img_height, 1, 10 ); if( min_log_img_width > max_log_img_width ) std::swap( min_log_img_width, max_log_img_width ); if (min_log_img_height > max_log_img_height) std::swap(min_log_img_height, max_log_img_height); return 0; } static void cvTsGenerateBlobImage( IplImage* img, int min_blob_size, int max_blob_size, int blob_count, int min_brightness, int max_brightness, RNG& rng ) { int i; Size size; CV_Assert(img->depth == IPL_DEPTH_8U && img->nChannels == 1); cvZero( img ); // keep the border clear cvSetImageROI( img, cvRect(1,1,img->width-2,img->height-2) ); size = cvGetSize( img ); for( i = 0; i < blob_count; i++ ) { Point center; Size axes; int angle = cvtest::randInt(rng) % 180; int brightness = cvtest::randInt(rng) % (max_brightness - min_brightness) + min_brightness; center.x = cvtest::randInt(rng) % size.width; center.y = cvtest::randInt(rng) % size.height; axes.width = (cvtest::randInt(rng) % (max_blob_size - min_blob_size) + min_blob_size + 1)/2; axes.height = (cvtest::randInt(rng) % (max_blob_size - min_blob_size) + min_blob_size + 1)/2; cvEllipse( img, cvPoint(center), cvSize(axes), angle, 0, 360, cvScalar(brightness), CV_FILLED ); } cvResetImageROI( img ); } static void cvTsMarkContours( IplImage* img, int val ) { int i, j; int step = img->widthStep; CV_Assert( img->depth == IPL_DEPTH_8U && img->nChannels == 1 && (val&1) != 0); for( i = 1; i < img->height - 1; i++ ) for( j = 1; j < img->width - 1; j++ ) { uchar* t = (uchar*)(img->imageData + img->widthStep*i + j); if( *t == 1 && (t[-step] == 0 || t[-1] == 0 || t[1] == 0 || t[step] == 0)) *t = (uchar)val; } cvThreshold( img, img, val - 2, val, CV_THRESH_BINARY ); } int CV_FindContourTest::prepare_test_case( int test_case_idx ) { RNG& rng = ts->get_rng(); const int min_brightness = 0, max_brightness = 2; int i, code = cvtest::BaseTest::prepare_test_case( test_case_idx ); if( code < 0 ) return code; clear(); blob_count = cvRound(exp(cvtest::randReal(rng)*max_log_blob_count*CV_LOG2)); img_size.width = cvRound(exp((cvtest::randReal(rng)* (max_log_img_width - min_log_img_width) + min_log_img_width)*CV_LOG2)); img_size.height = cvRound(exp((cvtest::randReal(rng)* (max_log_img_height - min_log_img_height) + min_log_img_height)*CV_LOG2)); approx_method = cvtest::randInt( rng ) % 4 + 1; retr_mode = cvtest::randInt( rng ) % 4; storage = cvCreateMemStorage( 1 << 10 ); for( i = 0; i < NUM_IMG; i++ ) img[i] = cvCreateImage( cvSize(img_size), 8, 1 ); cvTsGenerateBlobImage( img[0], min_blob_size, max_blob_size, blob_count, min_brightness, max_brightness, rng ); cvCopy( img[0], img[1] ); cvCopy( img[0], img[2] ); cvTsMarkContours( img[1], 255 ); return 1; } void CV_FindContourTest::run_func() { contours = contours2 = chain = 0; count = cvFindContours( img[2], storage, &contours, sizeof(CvContour), retr_mode, approx_method ); cvZero( img[3] ); if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 ) cvDrawContours( img[3], contours, cvScalar(255), cvScalar(255), INT_MAX, -1 ); cvCopy( img[0], img[2] ); count2 = cvFindContours( img[2], storage, &chain, sizeof(CvChain), retr_mode, CV_CHAIN_CODE ); if( chain ) contours2 = cvApproxChains( chain, storage, approx_method, 0, 0, 1 ); cvZero( img[2] ); if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 ) cvDrawContours( img[2], contours2, cvScalar(255), cvScalar(255), INT_MAX ); } // the whole testing is done here, run_func() is not utilized in this test int CV_FindContourTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; cvCmpS( img[0], 0, img[0], CV_CMP_GT ); if( count != count2 ) { ts->printf( cvtest::TS::LOG, "The number of contours retrieved with different " "approximation methods is not the same\n" "(%d contour(s) for method %d vs %d contour(s) for method %d)\n", count, approx_method, count2, CV_CHAIN_CODE ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } if( retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 ) { Mat _img[4]; for( int i = 0; i < 4; i++ ) _img[i] = cvarrToMat(img[i]); code = cvtest::cmpEps2(ts, _img[0], _img[3], 0, true, "Comparing original image with the map of filled contours" ); if( code < 0 ) goto _exit_; code = cvtest::cmpEps2( ts, _img[1], _img[2], 0, true, "Comparing contour outline vs manually produced edge map" ); if( code < 0 ) goto _exit_; } if( contours ) { CvTreeNodeIterator iterator1; CvTreeNodeIterator iterator2; int count3; for(int i = 0; i < 2; i++ ) { CvTreeNodeIterator iterator; cvInitTreeNodeIterator( &iterator, i == 0 ? contours : contours2, INT_MAX ); for( count3 = 0; cvNextTreeNode( &iterator ) != 0; count3++ ) ; if( count3 != count ) { ts->printf( cvtest::TS::LOG, "The returned number of retrieved contours (using the approx_method = %d) does not match\n" "to the actual number of contours in the tree/list (returned %d, actual %d)\n", i == 0 ? approx_method : 0, count, count3 ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } } cvInitTreeNodeIterator( &iterator1, contours, INT_MAX ); cvInitTreeNodeIterator( &iterator2, contours2, INT_MAX ); for( count3 = 0; count3 < count; count3++ ) { CvSeq* seq1 = (CvSeq*)cvNextTreeNode( &iterator1 ); CvSeq* seq2 = (CvSeq*)cvNextTreeNode( &iterator2 ); CvSeqReader reader1; CvSeqReader reader2; if( !seq1 || !seq2 ) { ts->printf( cvtest::TS::LOG, "There are NULL pointers in the original contour tree or the " "tree produced by cvApproxChains\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } cvStartReadSeq( seq1, &reader1 ); cvStartReadSeq( seq2, &reader2 ); if( seq1->total != seq2->total ) { ts->printf( cvtest::TS::LOG, "The original contour #%d has %d points, while the corresponding contour has %d point\n", count3, seq1->total, seq2->total ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } for(int i = 0; i < seq1->total; i++ ) { CvPoint pt1 = {0, 0}; CvPoint pt2 = {0, 0}; CV_READ_SEQ_ELEM( pt1, reader1 ); CV_READ_SEQ_ELEM( pt2, reader2 ); if( pt1.x != pt2.x || pt1.y != pt2.y ) { ts->printf( cvtest::TS::LOG, "The point #%d in the contour #%d is different from the corresponding point " "in the approximated chain ((%d,%d) vs (%d,%d)", count3, i, pt1.x, pt1.y, pt2.x, pt2.y ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } } } } _exit_: if( code < 0 ) { #if 0 cvNamedWindow( "test", 0 ); cvShowImage( "test", img[0] ); cvWaitKey(); #endif ts->set_failed_test_info( code ); } return code; } TEST(Imgproc_FindContours, accuracy) { CV_FindContourTest test; test.safe_run(); } //rotate/flip a quadrant appropriately static void rot(int n, int *x, int *y, int rx, int ry) { if (ry == 0) { if (rx == 1) { *x = n-1 - *x; *y = n-1 - *y; } //Swap x and y int t = *x; *x = *y; *y = t; } } static void d2xy(int n, int d, int *x, int *y) { int rx, ry, s, t=d; *x = *y = 0; for (s=1; s > contours; findContours(img, contours, noArray(), RETR_LIST, CHAIN_APPROX_SIMPLE); printf("ncontours = %d, contour[0].npoints=%d\n", (int)contours.size(), (int)contours[0].size()); img.setTo(Scalar::all(0)); drawContours(img, contours, 0, Scalar::all(255), 1); ASSERT_EQ(1, (int)contours.size()); ASSERT_EQ(9832, (int)contours[0].size()); } TEST(Imgproc_FindContours, border) { Mat img; cv::copyMakeBorder(Mat::zeros(8, 10, CV_8U), img, 1, 1, 1, 1, BORDER_CONSTANT, Scalar(1)); std::vector > contours; findContours(img, contours, RETR_LIST, CHAIN_APPROX_NONE); Mat img_draw_contours = Mat::zeros(img.size(), CV_8U); for (size_t cpt = 0; cpt < contours.size(); cpt++) { drawContours(img_draw_contours, contours, static_cast(cpt), cv::Scalar(1)); } ASSERT_EQ(0, cvtest::norm(img, img_draw_contours, NORM_INF)); } TEST(Imgproc_FindContours, regression_4363_shared_nbd) { // Create specific test image Mat1b img(12, 69, (const uchar&)0); img(1, 1) = 1; // Vertical rectangle with hole sharing the same NBD for (int r = 1; r <= 10; ++r) { for (int c = 3; c <= 5; ++c) { img(r, c) = 1; } } img(9, 4) = 0; // 124 small CCs for (int r = 1; r <= 7; r += 2) { for (int c = 7; c <= 67; c += 2) { img(r, c) = 1; } } // Last CC img(9, 7) = 1; vector< vector > contours; vector hierarchy; findContours(img, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE); bool found = false; size_t index = 0; for (vector< vector >::const_iterator i = contours.begin(); i != contours.end(); ++i) { const vector& c = *i; if (!c.empty() && c[0] == Point(7, 9)) { found = true; index = (size_t)(i - contours.begin()); break; } } EXPECT_TRUE(found) << "Desired result: point (7,9) is a contour - Actual result: point (7,9) is not a contour"; if (found) { EXPECT_LT(hierarchy[index][3], 0) << "Desired result: (7,9) has no parent - Actual result: parent of (7,9) is another contour. index = " << index; } } TEST(Imgproc_PointPolygonTest, regression_10222) { vector contour; contour.push_back(Point(0, 0)); contour.push_back(Point(0, 100000)); contour.push_back(Point(100000, 100000)); contour.push_back(Point(100000, 50000)); contour.push_back(Point(100000, 0)); const Point2f point(40000, 40000); const double result = cv::pointPolygonTest(contour, point, false); EXPECT_GT(result, 0) << "Desired result: point is inside polygon - actual result: point is not inside polygon"; } }} // namespace /* End of file. */