/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include // EXPECT_MAT_NEAR #include "../src/fisheye.hpp" #include "opencv2/videoio.hpp" namespace opencv_test { namespace { class fisheyeTest : public ::testing::Test { protected: const static cv::Size imageSize; const static cv::Matx33d K; const static cv::Vec4d D; const static cv::Matx33d R; const static cv::Vec3d T; std::string datasets_repository_path; virtual void SetUp() { datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye"); } protected: std::string combine(const std::string& _item1, const std::string& _item2); static void merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged); }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// TESTS:: TEST_F(fisheyeTest, projectPoints) { double cols = this->imageSize.width, rows = this->imageSize.height; const int N = 20; cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2; undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3)); cv::Vec2d* pts = distorted0.ptr(); cv::Vec2d c(this->K(0, 2), this->K(1, 2)); for(int y = 0, k = 0; y < N; ++y) for(int x = 0; x < N; ++x) { cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f)); pts[k++] = (point - c) * 0.85 + c; } cv::fisheye::undistortPoints(distorted0, undist1, this->K, this->D); cv::Vec2d* u1 = undist1.ptr(); cv::Vec3d* u2 = undist2.ptr(); for(int i = 0; i < (int)distorted0.total(); ++i) u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0); cv::fisheye::distortPoints(undist1, distorted1, this->K, this->D); cv::fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), this->K, this->D); EXPECT_MAT_NEAR(distorted0, distorted1, 1e-10); EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10); } TEST_F(fisheyeTest, DISABLED_undistortImage) { cv::Matx33d theK = this->K; cv::Mat theD = cv::Mat(this->D); std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg"); cv::Matx33d newK = theK; cv::Mat distorted = cv::imread(file), undistorted; { newK(0, 0) = 100; newK(1, 1) = 100; cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK); cv::Mat correct = cv::imread(combine(datasets_repository_path, "new_f_100.png")); if (correct.empty()) CV_Assert(cv::imwrite(combine(datasets_repository_path, "new_f_100.png"), undistorted)); else EXPECT_MAT_NEAR(correct, undistorted, 1e-10); } { double balance = 1.0; cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance); cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK); cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_1.0.png")); if (correct.empty()) CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_1.0.png"), undistorted)); else EXPECT_MAT_NEAR(correct, undistorted, 1e-10); } { double balance = 0.0; cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance); cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK); cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_0.0.png")); if (correct.empty()) CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_0.0.png"), undistorted)); else EXPECT_MAT_NEAR(correct, undistorted, 1e-10); } } TEST_F(fisheyeTest, jacobians) { int n = 10; cv::Mat X(1, n, CV_64FC3); cv::Mat om(3, 1, CV_64F), theT(3, 1, CV_64F); cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F); cv::Mat k(4, 1, CV_64F); double alpha; cv::RNG r; r.fill(X, cv::RNG::NORMAL, 2, 1); X = cv::abs(X) * 10; r.fill(om, cv::RNG::NORMAL, 0, 1); om = cv::abs(om); r.fill(theT, cv::RNG::NORMAL, 0, 1); theT = cv::abs(theT); theT.at(2) = 4; theT *= 10; r.fill(f, cv::RNG::NORMAL, 0, 1); f = cv::abs(f) * 1000; r.fill(c, cv::RNG::NORMAL, 0, 1); c = cv::abs(c) * 1000; r.fill(k, cv::RNG::NORMAL, 0, 1); k*= 0.5; alpha = 0.01*r.gaussian(1); cv::Mat x1, x2, xpred; cv::Matx33d theK(f.at(0), alpha * f.at(0), c.at(0), 0, f.at(1), c.at(1), 0, 0, 1); cv::Mat jacobians; cv::fisheye::projectPoints(X, x1, om, theT, theK, k, alpha, jacobians); //test on T: cv::Mat dT(3, 1, CV_64FC1); r.fill(dT, cv::RNG::NORMAL, 0, 1); dT *= 1e-9*cv::norm(theT); cv::Mat T2 = theT + dT; cv::fisheye::projectPoints(X, x2, om, T2, theK, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on om: cv::Mat dom(3, 1, CV_64FC1); r.fill(dom, cv::RNG::NORMAL, 0, 1); dom *= 1e-9*cv::norm(om); cv::Mat om2 = om + dom; cv::fisheye::projectPoints(X, x2, om2, theT, theK, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on f: cv::Mat df(2, 1, CV_64FC1); r.fill(df, cv::RNG::NORMAL, 0, 1); df *= 1e-9*cv::norm(f); cv::Matx33d K2 = theK + cv::Matx33d(df.at(0), df.at(0) * alpha, 0, 0, df.at(1), 0, 0, 0, 0); cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on c: cv::Mat dc(2, 1, CV_64FC1); r.fill(dc, cv::RNG::NORMAL, 0, 1); dc *= 1e-9*cv::norm(c); K2 = theK + cv::Matx33d(0, 0, dc.at(0), 0, 0, dc.at(1), 0, 0, 0); cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on k: cv::Mat dk(4, 1, CV_64FC1); r.fill(dk, cv::RNG::NORMAL, 0, 1); dk *= 1e-9*cv::norm(k); cv::Mat k2 = k + dk; cv::fisheye::projectPoints(X, x2, om, theT, theK, k2, alpha, cv::noArray()); xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); //test on alpha: cv::Mat dalpha(1, 1, CV_64FC1); r.fill(dalpha, cv::RNG::NORMAL, 0, 1); dalpha *= 1e-9*cv::norm(f); double alpha2 = alpha + dalpha.at(0); K2 = theK + cv::Matx33d(0, f.at(0) * dalpha.at(0), 0, 0, 0, 0, 0, 0, 0); cv::fisheye::projectPoints(X, x2, om, theT, theK, k, alpha2, cv::noArray()); xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1); CV_Assert (cv::norm(x2 - xpred) < 1e-10); } TEST_F(fisheyeTest, Calibration) { const int n_images = 34; std::vector > imagePoints(n_images); std::vector > objectPoints(n_images); const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> imagePoints[i]; fs_left.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); int flag = 0; flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::fisheye::CALIB_CHECK_COND; flag |= cv::fisheye::CALIB_FIX_SKEW; cv::Matx33d theK; cv::Vec4d theD; cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); EXPECT_MAT_NEAR(theK, this->K, 1e-10); EXPECT_MAT_NEAR(theD, this->D, 1e-10); } TEST_F(fisheyeTest, Homography) { const int n_images = 1; std::vector > imagePoints(n_images); std::vector > objectPoints(n_images); const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> imagePoints[i]; fs_left.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); cv::internal::IntrinsicParams param; param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI), cv::Vec2d(imageSize.width / 2.0 - 0.5, imageSize.height / 2.0 - 0.5)); cv::Mat _imagePoints (imagePoints[0]); cv::Mat _objectPoints(objectPoints[0]); cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t(); _objectPoints = _objectPoints.reshape(1).t(); cv::Mat objectPointsMean, covObjectPoints; int Np = imagePointsNormalized.cols; cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, cv::COVAR_NORMAL | cv::COVAR_COLS); cv::SVD svd(covObjectPoints); cv::Mat theR(svd.vt); if (cv::norm(theR(cv::Rect(2, 0, 1, 2))) < 1e-6) theR = cv::Mat::eye(3,3, CV_64FC1); if (cv::determinant(theR) < 0) theR = -theR; cv::Mat theT = -theR * objectPointsMean; cv::Mat X_new = theR * _objectPoints + theT * cv::Mat::ones(1, Np, CV_64FC1); cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2)); cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1); X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2)); cv::Mat mrep = H * M; cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep); cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t(); cv::Vec2d std_err; cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err); std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1)); cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901); EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-12); } TEST_F(fisheyeTest, EstimateUncertainties) { const int n_images = 34; std::vector > imagePoints(n_images); std::vector > objectPoints(n_images); const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> imagePoints[i]; fs_left.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); int flag = 0; flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::fisheye::CALIB_CHECK_COND; flag |= cv::fisheye::CALIB_FIX_SKEW; cv::Matx33d theK; cv::Vec4d theD; std::vector rvec; std::vector tvec; cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD, rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6)); cv::internal::IntrinsicParams param, errors; cv::Vec2d err_std; double thresh_cond = 1e6; int check_cond = 1; param.Init(cv::Vec2d(theK(0,0), theK(1,1)), cv::Vec2d(theK(0,2), theK(1, 2)), theD); param.isEstimate = std::vector(9, 1); param.isEstimate[4] = 0; errors.isEstimate = param.isEstimate; double rms; cv::internal::EstimateUncertainties(objectPoints, imagePoints, param, rvec, tvec, errors, err_std, thresh_cond, check_cond, rms); EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.29837104202046, 1.31565641071524), 1e-10); EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.890439368129246, 0.816096854937896), 1e-10); EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.00516248605191506, 0.0168181467500934, 0.0213118690274604, 0.00916010877545648), 1e-10); EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-10); CV_Assert(fabs(rms - 0.263782587133546) < 1e-10); CV_Assert(errors.alpha == 0); } TEST_F(fisheyeTest, stereoRectify) { const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); cv::Size calibration_size = this->imageSize, requested_size = calibration_size; cv::Matx33d K1 = this->K, K2 = K1; cv::Mat D1 = cv::Mat(this->D), D2 = D1; cv::Vec3d theT = this->T; cv::Matx33d theR = this->R; double balance = 0.0, fov_scale = 1.1; cv::Mat R1, R2, P1, P2, Q; cv::fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, theR, theT, R1, R2, P1, P2, Q, cv::CALIB_ZERO_DISPARITY, requested_size, balance, fov_scale); // Collected with these CMake flags: -DWITH_IPP=OFF -DCV_ENABLE_INTRINSICS=OFF -DCV_DISABLE_OPTIMIZATION=ON -DCMAKE_BUILD_TYPE=Debug cv::Matx33d R1_ref( 0.9992853269091279, 0.03779164101000276, -0.0007920188690205426, -0.03778569762983931, 0.9992646472015868, 0.006511981857667881, 0.001037534936357442, -0.006477400933964018, 0.9999784831677112 ); cv::Matx33d R2_ref( 0.9994868963898833, -0.03197579751378937, -0.001868774538573449, 0.03196298186616116, 0.9994677442608699, -0.0065265589947392, 0.002076471801477729, 0.006463478587068991, 0.9999769555891836 ); cv::Matx34d P1_ref( 420.8551870450913, 0, 586.501617798451, 0, 0, 420.8551870450913, 374.7667511986098, 0, 0, 0, 1, 0 ); cv::Matx34d P2_ref( 420.8551870450913, 0, 586.501617798451, -41.77758076597302, 0, 420.8551870450913, 374.7667511986098, 0, 0, 0, 1, 0 ); cv::Matx44d Q_ref( 1, 0, 0, -586.501617798451, 0, 1, 0, -374.7667511986098, 0, 0, 0, 420.8551870450913, 0, 0, 10.07370889670733, -0 ); const double eps = 1e-10; EXPECT_MAT_NEAR(R1_ref, R1, eps); EXPECT_MAT_NEAR(R2_ref, R2, eps); EXPECT_MAT_NEAR(P1_ref, P1, eps); EXPECT_MAT_NEAR(P2_ref, P2, eps); EXPECT_MAT_NEAR(Q_ref, Q, eps); if (::testing::Test::HasFailure()) { std::cout << "Actual values are:" << std::endl << "R1 =" << std::endl << R1 << std::endl << "R2 =" << std::endl << R2 << std::endl << "P1 =" << std::endl << P1 << std::endl << "P2 =" << std::endl << P2 << std::endl << "Q =" << std::endl << Q << std::endl; } #if 1 // Debug code cv::Mat lmapx, lmapy, rmapx, rmapy; //rewrite for fisheye cv::fisheye::initUndistortRectifyMap(K1, D1, R1, P1, requested_size, CV_32F, lmapx, lmapy); cv::fisheye::initUndistortRectifyMap(K2, D2, R2, P2, requested_size, CV_32F, rmapx, rmapy); cv::Mat l, r, lundist, rundist; for (int i = 0; i < 34; ++i) { SCOPED_TRACE(cv::format("image %d", i)); l = imread(combine(folder, cv::format("left/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR); r = imread(combine(folder, cv::format("right/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR); ASSERT_FALSE(l.empty()); ASSERT_FALSE(r.empty()); int ndisp = 128; cv::rectangle(l, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255)); cv::rectangle(r, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255)); cv::rectangle(r, cv::Rect(255-ndisp, 0, 829+ndisp ,l.rows-1), cv::Scalar(0, 0, 255)); cv::remap(l, lundist, lmapx, lmapy, cv::INTER_LINEAR); cv::remap(r, rundist, rmapx, rmapy, cv::INTER_LINEAR); for (int ii = 0; ii < lundist.rows; ii += 20) { cv::line(lundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0)); cv::line(rundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0)); } cv::Mat rectification; merge4(l, r, lundist, rundist, rectification); cv::imwrite(cv::format("fisheye_rectification_AB_%03d.png", i), rectification); } #endif } TEST_F(fisheyeTest, stereoCalibrate) { const int n_images = 34; const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); std::vector > leftPoints(n_images); std::vector > rightPoints(n_images); std::vector > objectPoints(n_images); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> leftPoints[i]; fs_left.release(); cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); CV_Assert(fs_right.isOpened()); for(int i = 0; i < n_images; ++i) fs_right[cv::format("image_%d", i )] >> rightPoints[i]; fs_right.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); cv::Matx33d K1, K2, theR; cv::Vec3d theT; cv::Vec4d D1, D2; int flag = 0; flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::fisheye::CALIB_CHECK_COND; flag |= cv::fisheye::CALIB_FIX_SKEW; cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, K1, D1, K2, D2, imageSize, theR, theT, flag, cv::TermCriteria(3, 12, 0)); cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, -0.06956823121068059, 0.9975601387249519, 0.005833595226966235, -0.006071257768382089, -0.006271040135405457, 0.9999619062167968); cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); cv::Matx33d K1_correct (561.195925927249, 0, 621.282400272412, 0, 562.849402029712, 380.555455380889, 0, 0, 1); cv::Matx33d K2_correct (560.395452535348, 0, 678.971652040359, 0, 561.90171021422, 380.401340535339, 0, 0, 1); cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); EXPECT_MAT_NEAR(theR, R_correct, 1e-10); EXPECT_MAT_NEAR(theT, T_correct, 1e-10); EXPECT_MAT_NEAR(K1, K1_correct, 1e-10); EXPECT_MAT_NEAR(K2, K2_correct, 1e-10); EXPECT_MAT_NEAR(D1, D1_correct, 1e-10); EXPECT_MAT_NEAR(D2, D2_correct, 1e-10); } TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic) { const int n_images = 34; const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); std::vector > leftPoints(n_images); std::vector > rightPoints(n_images); std::vector > objectPoints(n_images); cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ); CV_Assert(fs_left.isOpened()); for(int i = 0; i < n_images; ++i) fs_left[cv::format("image_%d", i )] >> leftPoints[i]; fs_left.release(); cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ); CV_Assert(fs_right.isOpened()); for(int i = 0; i < n_images; ++i) fs_right[cv::format("image_%d", i )] >> rightPoints[i]; fs_right.release(); cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ); CV_Assert(fs_object.isOpened()); for(int i = 0; i < n_images; ++i) fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object.release(); cv::Matx33d theR; cv::Vec3d theT; int flag = 0; flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::fisheye::CALIB_CHECK_COND; flag |= cv::fisheye::CALIB_FIX_SKEW; flag |= cv::fisheye::CALIB_FIX_INTRINSIC; cv::Matx33d K1 (561.195925927249, 0, 621.282400272412, 0, 562.849402029712, 380.555455380889, 0, 0, 1); cv::Matx33d K2 (560.395452535348, 0, 678.971652040359, 0, 561.90171021422, 380.401340535339, 0, 0, 1); cv::Vec4d D1 (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); cv::Vec4d D2 (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, K1, D1, K2, D2, imageSize, theR, theT, flag, cv::TermCriteria(3, 12, 0)); cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, -0.06956823121068059, 0.9975601387249519, 0.005833595226966235, -0.006071257768382089, -0.006271040135405457, 0.9999619062167968); cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); EXPECT_MAT_NEAR(theR, R_correct, 1e-10); EXPECT_MAT_NEAR(theT, T_correct, 1e-10); } TEST_F(fisheyeTest, CalibrationWithDifferentPointsNumber) { const int n_images = 2; std::vector > imagePoints(n_images); std::vector > objectPoints(n_images); std::vector imgPoints1(10); std::vector imgPoints2(15); std::vector objectPoints1(imgPoints1.size()); std::vector objectPoints2(imgPoints2.size()); for (size_t i = 0; i < imgPoints1.size(); i++) { imgPoints1[i] = cv::Point2d((double)i, (double)i); objectPoints1[i] = cv::Point3d((double)i, (double)i, 10.0); } for (size_t i = 0; i < imgPoints2.size(); i++) { imgPoints2[i] = cv::Point2d(i + 0.5, i + 0.5); objectPoints2[i] = cv::Point3d(i + 0.5, i + 0.5, 10.0); } imagePoints[0] = imgPoints1; imagePoints[1] = imgPoints2; objectPoints[0] = objectPoints1; objectPoints[1] = objectPoints2; cv::Matx33d theK = cv::Matx33d::eye(); cv::Vec4d theD; int flag = 0; flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::fisheye::CALIB_USE_INTRINSIC_GUESS; flag |= cv::fisheye::CALIB_FIX_SKEW; cv::fisheye::calibrate(objectPoints, imagePoints, cv::Size(100, 100), theK, theD, cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// fisheyeTest:: const cv::Size fisheyeTest::imageSize(1280, 800); const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843, 0, 560.506767351568, 381.939424848348, 0, 0, 1); const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371); const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03, -6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02, -5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01); const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04); std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2) { std::string item1 = _item1, item2 = _item2; std::replace(item1.begin(), item1.end(), '\\', '/'); std::replace(item2.begin(), item2.end(), '\\', '/'); if (item1.empty()) return item2; if (item2.empty()) return item1; char last = item1[item1.size()-1]; return item1 + (last != '/' ? "/" : "") + item2; } void fisheyeTest::merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged) { int type = tl.type(); cv::Size sz = tl.size(); ASSERT_EQ(type, tr.type()); ASSERT_EQ(type, bl.type()); ASSERT_EQ(type, br.type()); ASSERT_EQ(sz.width, tr.cols); ASSERT_EQ(sz.width, bl.cols); ASSERT_EQ(sz.width, br.cols); ASSERT_EQ(sz.height, tr.rows); ASSERT_EQ(sz.height, bl.rows); ASSERT_EQ(sz.height, br.rows); merged.create(cv::Size(sz.width * 2, sz.height * 2), type); tl.copyTo(merged(cv::Rect(0, 0, sz.width, sz.height))); tr.copyTo(merged(cv::Rect(sz.width, 0, sz.width, sz.height))); bl.copyTo(merged(cv::Rect(0, sz.height, sz.width, sz.height))); br.copyTo(merged(cv::Rect(sz.width, sz.height, sz.width, sz.height))); } }} // namespace