/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace std; namespace cv { /* * FeatureDetector */ FeatureDetector::~FeatureDetector() {} void FeatureDetector::detect( const Mat& image, vector& keypoints, const Mat& mask ) const { keypoints.clear(); if( image.empty() ) return; CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) ); detectImpl( image, keypoints, mask ); } void FeatureDetector::detect(const vector& imageCollection, vector >& pointCollection, const vector& masks ) const { pointCollection.resize( imageCollection.size() ); for( size_t i = 0; i < imageCollection.size(); i++ ) detect( imageCollection[i], pointCollection[i], masks.empty() ? Mat() : masks[i] ); } /*void FeatureDetector::read( const FileNode& ) {} void FeatureDetector::write( FileStorage& ) const {}*/ bool FeatureDetector::empty() const { return false; } void FeatureDetector::removeInvalidPoints( const Mat& mask, vector& keypoints ) { KeyPointsFilter::runByPixelsMask( keypoints, mask ); } Ptr FeatureDetector::create( const string& detectorType ) { if( detectorType.find("Grid") == 0 ) { return new GridAdaptedFeatureDetector(FeatureDetector::create( detectorType.substr(strlen("Grid")))); } if( detectorType.find("Pyramid") == 0 ) { return new PyramidAdaptedFeatureDetector(FeatureDetector::create( detectorType.substr(strlen("Pyramid")))); } if( detectorType.find("Dynamic") == 0 ) { return new DynamicAdaptedFeatureDetector(AdjusterAdapter::create( detectorType.substr(strlen("Dynamic")))); } if( detectorType.compare( "HARRIS" ) == 0 ) { Ptr fd = FeatureDetector::create("GFTT"); fd->set("useHarrisDetector", true); return fd; } return Algorithm::create("Feature2D." + detectorType); } GFTTDetector::GFTTDetector( int _nfeatures, double _qualityLevel, double _minDistance, int _blockSize, bool _useHarrisDetector, double _k ) : nfeatures(_nfeatures), qualityLevel(_qualityLevel), minDistance(_minDistance), blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k) { } void GFTTDetector::detectImpl( const Mat& image, vector& keypoints, const Mat& mask) const { Mat grayImage = image; if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY ); vector corners; goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k ); keypoints.resize(corners.size()); vector::const_iterator corner_it = corners.begin(); vector::iterator keypoint_it = keypoints.begin(); for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it ) { *keypoint_it = KeyPoint( *corner_it, (float)blockSize ); } } static Algorithm* createGFTT() { return new GFTTDetector; } static Algorithm* createHarris() { GFTTDetector* d = new GFTTDetector; d->set("useHarris", true); return d; } static AlgorithmInfo gftt_info("Feature2D.GFTT", createGFTT); static AlgorithmInfo harris_info("Feature2D.HARRIS", createHarris); AlgorithmInfo* GFTTDetector::info() const { static volatile bool initialized = false; if( !initialized ) { gftt_info.addParam(this, "nfeatures", nfeatures); gftt_info.addParam(this, "qualityLevel", qualityLevel); gftt_info.addParam(this, "minDistance", minDistance); gftt_info.addParam(this, "useHarrisDetector", useHarrisDetector); gftt_info.addParam(this, "k", k); harris_info.addParam(this, "nfeatures", nfeatures); harris_info.addParam(this, "qualityLevel", qualityLevel); harris_info.addParam(this, "minDistance", minDistance); harris_info.addParam(this, "useHarrisDetector", useHarrisDetector); harris_info.addParam(this, "k", k); initialized = true; } return &gftt_info; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /* * DenseFeatureDetector */ DenseFeatureDetector::DenseFeatureDetector( float _initFeatureScale, int _featureScaleLevels, float _featureScaleMul, int _initXyStep, int _initImgBound, bool _varyXyStepWithScale, bool _varyImgBoundWithScale ) : initFeatureScale(_initFeatureScale), featureScaleLevels(_featureScaleLevels), featureScaleMul(_featureScaleMul), initXyStep(_initXyStep), initImgBound(_initImgBound), varyXyStepWithScale(_varyXyStepWithScale), varyImgBoundWithScale(_varyImgBoundWithScale) {} void DenseFeatureDetector::detectImpl( const Mat& image, vector& keypoints, const Mat& mask ) const { float curScale = initFeatureScale; int curStep = initXyStep; int curBound = initImgBound; for( int curLevel = 0; curLevel < featureScaleLevels; curLevel++ ) { for( int x = curBound; x < image.cols - curBound; x += curStep ) { for( int y = curBound; y < image.rows - curBound; y += curStep ) { keypoints.push_back( KeyPoint(static_cast(x), static_cast(y), curScale) ); } } curScale = curScale * featureScaleMul; if( varyXyStepWithScale ) curStep = static_cast( curStep * featureScaleMul + 0.5f ); if( varyImgBoundWithScale ) curBound = static_cast( curBound * featureScaleMul + 0.5f ); } KeyPointsFilter::runByPixelsMask( keypoints, mask ); } static Algorithm* createDense() { return new DenseFeatureDetector; } AlgorithmInfo* DenseFeatureDetector::info() const { static AlgorithmInfo info_("Feature2D.Dense", createDense); static volatile bool initialized = false; if( !initialized ) { info_.addParam(this, "initFeatureScale", initFeatureScale); info_.addParam(this, "featureScaleLevels", featureScaleLevels); info_.addParam(this, "featureScaleMul", featureScaleMul); info_.addParam(this, "initXyStep", initXyStep); info_.addParam(this, "initImgBound", initImgBound); info_.addParam(this, "varyXyStepWithScale", varyXyStepWithScale); info_.addParam(this, "varyImgBoundWithScale", varyImgBoundWithScale); initialized = true; } return &info_; } /* * GridAdaptedFeatureDetector */ GridAdaptedFeatureDetector::GridAdaptedFeatureDetector( const Ptr& _detector, int _maxTotalKeypoints, int _gridRows, int _gridCols ) : detector(_detector), maxTotalKeypoints(_maxTotalKeypoints), gridRows(_gridRows), gridCols(_gridCols) {} bool GridAdaptedFeatureDetector::empty() const { return detector.empty() || (FeatureDetector*)detector->empty(); } struct ResponseComparator { bool operator() (const KeyPoint& a, const KeyPoint& b) { return std::abs(a.response) > std::abs(b.response); } }; void keepStrongest( int N, vector& keypoints ) { if( (int)keypoints.size() > N ) { vector::iterator nth = keypoints.begin() + N; std::nth_element( keypoints.begin(), nth, keypoints.end(), ResponseComparator() ); keypoints.erase( nth, keypoints.end() ); } } void GridAdaptedFeatureDetector::detectImpl( const Mat& image, vector& keypoints, const Mat& mask ) const { keypoints.reserve(maxTotalKeypoints); int maxPerCell = maxTotalKeypoints / (gridRows * gridCols); for( int i = 0; i < gridRows; ++i ) { Range row_range((i*image.rows)/gridRows, ((i+1)*image.rows)/gridRows); for( int j = 0; j < gridCols; ++j ) { Range col_range((j*image.cols)/gridCols, ((j+1)*image.cols)/gridCols); Mat sub_image = image(row_range, col_range); Mat sub_mask; if( !mask.empty() ) sub_mask = mask(row_range, col_range); vector sub_keypoints; detector->detect( sub_image, sub_keypoints, sub_mask ); keepStrongest( maxPerCell, sub_keypoints ); std::vector::iterator it = sub_keypoints.begin(), end = sub_keypoints.end(); for( ; it != end; ++it ) { it->pt.x += col_range.start; it->pt.y += row_range.start; } keypoints.insert( keypoints.end(), sub_keypoints.begin(), sub_keypoints.end() ); } } } /* * PyramidAdaptedFeatureDetector */ PyramidAdaptedFeatureDetector::PyramidAdaptedFeatureDetector( const Ptr& _detector, int _maxLevel ) : detector(_detector), maxLevel(_maxLevel) {} bool PyramidAdaptedFeatureDetector::empty() const { return detector.empty() || (FeatureDetector*)detector->empty(); } void PyramidAdaptedFeatureDetector::detectImpl( const Mat& image, vector& keypoints, const Mat& mask ) const { Mat src = image; Mat src_mask = mask; Mat dilated_mask; if( !mask.empty() ) { dilate( mask, dilated_mask, Mat() ); Mat mask255( mask.size(), CV_8UC1, Scalar(0) ); mask255.setTo( Scalar(255), dilated_mask != 0 ); dilated_mask = mask255; } for( int l = 0, multiplier = 1; l <= maxLevel; ++l, multiplier *= 2 ) { // Detect on current level of the pyramid vector new_pts; detector->detect( src, new_pts, src_mask ); vector::iterator it = new_pts.begin(), end = new_pts.end(); for( ; it != end; ++it) { it->pt.x *= multiplier; it->pt.y *= multiplier; it->size *= multiplier; it->octave = l; } keypoints.insert( keypoints.end(), new_pts.begin(), new_pts.end() ); // Downsample if( l < maxLevel ) { Mat dst; pyrDown( src, dst ); src = dst; if( !mask.empty() ) resize( dilated_mask, src_mask, src.size(), 0, 0, CV_INTER_AREA ); } } if( !mask.empty() ) KeyPointsFilter::runByPixelsMask( keypoints, mask ); } }