/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_CALIB3D_HPP__ #define __OPENCV_CALIB3D_HPP__ #include "opencv2/core/core.hpp" #ifdef __cplusplus extern "C" { #endif /****************************************************************************************\ * Camera Calibration, Pose Estimation and Stereo * \****************************************************************************************/ typedef struct CvPOSITObject CvPOSITObject; /* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */ CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count ); /* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of an object given its model and projection in a weak-perspective case */ CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points, double focal_length, CvTermCriteria criteria, float* rotation_matrix, float* translation_vector); /* Releases CvPOSITObject structure */ CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object ); /* updates the number of RANSAC iterations */ CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob, int model_points, int max_iters ); CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst ); /* Calculates fundamental matrix given a set of corresponding points */ #define CV_FM_7POINT 1 #define CV_FM_8POINT 2 #define CV_FM_LMEDS_ONLY 8 #define CV_FM_RANSAC_ONLY 4 #define CV_FM_LMEDS 8 #define CV_FM_RANSAC 4 CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2, CvMat* fundamental_matrix, int method CV_DEFAULT(CV_FM_RANSAC), double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99), CvMat* status CV_DEFAULT(NULL) ); /* For each input point on one of images computes parameters of the corresponding epipolar line on the other image */ CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points, int which_image, const CvMat* fundamental_matrix, CvMat* correspondent_lines ); /* Triangulation functions */ CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, CvMat* projPoints1, CvMat* projPoints2, CvMat* points4D); CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2, CvMat* new_points1, CvMat* new_points2); /* Computes the optimal new camera matrix according to the free scaling parameter alpha: alpha=0 - only valid pixels will be retained in the undistorted image alpha=1 - all the source image pixels will be retained in the undistorted image */ CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix, const CvMat* dist_coeffs, CvSize image_size, double alpha, CvMat* new_camera_matrix, CvSize new_imag_size CV_DEFAULT(cvSize(0,0)), CvRect* valid_pixel_ROI CV_DEFAULT(0) ); /* Converts rotation vector to rotation matrix or vice versa */ CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian CV_DEFAULT(0) ); #define CV_LMEDS 4 #define CV_RANSAC 8 /* Finds perspective transformation between the object plane and image (view) plane */ CVAPI(int) cvFindHomography( const CvMat* src_points, const CvMat* dst_points, CvMat* homography, int method CV_DEFAULT(0), double ransacReprojThreshold CV_DEFAULT(3), CvMat* mask CV_DEFAULT(0)); /* Computes RQ decomposition for 3x3 matrices */ CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ, CvMat *matrixQx CV_DEFAULT(NULL), CvMat *matrixQy CV_DEFAULT(NULL), CvMat *matrixQz CV_DEFAULT(NULL), CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); /* Computes projection matrix decomposition */ CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr, CvMat *rotMatr, CvMat *posVect, CvMat *rotMatrX CV_DEFAULT(NULL), CvMat *rotMatrY CV_DEFAULT(NULL), CvMat *rotMatrZ CV_DEFAULT(NULL), CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); /* Computes d(AB)/dA and d(AB)/dB */ CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB ); /* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)), t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */ CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1, const CvMat* _rvec2, const CvMat* _tvec2, CvMat* _rvec3, CvMat* _tvec3, CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0), CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0), CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0), CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) ); /* Projects object points to the view plane using the specified extrinsic and intrinsic camera parameters */ CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector, const CvMat* translation_vector, const CvMat* camera_matrix, const CvMat* distortion_coeffs, CvMat* image_points, CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL), CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL), CvMat* dpddist CV_DEFAULT(NULL), double aspect_ratio CV_DEFAULT(0)); /* Finds extrinsic camera parameters from a few known corresponding point pairs and intrinsic parameters */ CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points, const CvMat* image_points, const CvMat* camera_matrix, const CvMat* distortion_coeffs, CvMat* rotation_vector, CvMat* translation_vector, int use_extrinsic_guess CV_DEFAULT(0) ); /* Computes initial estimate of the intrinsic camera parameters in case of planar calibration target (e.g. chessboard) */ CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points, const CvMat* image_points, const CvMat* npoints, CvSize image_size, CvMat* camera_matrix, double aspect_ratio CV_DEFAULT(1.) ); #define CV_CALIB_CB_ADAPTIVE_THRESH 1 #define CV_CALIB_CB_NORMALIZE_IMAGE 2 #define CV_CALIB_CB_FILTER_QUADS 4 #define CV_CALIB_CB_FAST_CHECK 8 // Performs a fast check if a chessboard is in the input image. This is a workaround to // a problem of cvFindChessboardCorners being slow on images with no chessboard // - src: input image // - size: chessboard size // Returns 1 if a chessboard can be in this image and findChessboardCorners should be called, // 0 if there is no chessboard, -1 in case of error CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size); /* Detects corners on a chessboard calibration pattern */ CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size, CvPoint2D32f* corners, int* corner_count CV_DEFAULT(NULL), int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+ CV_CALIB_CB_NORMALIZE_IMAGE) ); /* Draws individual chessboard corners or the whole chessboard detected */ CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size, CvPoint2D32f* corners, int count, int pattern_was_found ); #define CV_CALIB_USE_INTRINSIC_GUESS 1 #define CV_CALIB_FIX_ASPECT_RATIO 2 #define CV_CALIB_FIX_PRINCIPAL_POINT 4 #define CV_CALIB_ZERO_TANGENT_DIST 8 #define CV_CALIB_FIX_FOCAL_LENGTH 16 #define CV_CALIB_FIX_K1 32 #define CV_CALIB_FIX_K2 64 #define CV_CALIB_FIX_K3 128 #define CV_CALIB_FIX_K4 2048 #define CV_CALIB_FIX_K5 4096 #define CV_CALIB_FIX_K6 8192 /* Finds intrinsic and extrinsic camera parameters from a few views of known calibration pattern */ CVAPI(double) cvCalibrateCamera2( const CvMat* object_points, const CvMat* image_points, const CvMat* point_counts, CvSize image_size, CvMat* camera_matrix, CvMat* distortion_coeffs, CvMat* rotation_vectors CV_DEFAULT(NULL), CvMat* translation_vectors CV_DEFAULT(NULL), int flags CV_DEFAULT(0) ); /* Computes various useful characteristics of the camera from the data computed by cvCalibrateCamera2 */ CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix, CvSize image_size, double aperture_width CV_DEFAULT(0), double aperture_height CV_DEFAULT(0), double *fovx CV_DEFAULT(NULL), double *fovy CV_DEFAULT(NULL), double *focal_length CV_DEFAULT(NULL), CvPoint2D64f *principal_point CV_DEFAULT(NULL), double *pixel_aspect_ratio CV_DEFAULT(NULL)); #define CV_CALIB_FIX_INTRINSIC 256 #define CV_CALIB_SAME_FOCAL_LENGTH 512 /* Computes the transformation from one camera coordinate system to another one from a few correspondent views of the same calibration target. Optionally, calibrates both cameras */ CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1, const CvMat* image_points2, const CvMat* npoints, CvMat* camera_matrix1, CvMat* dist_coeffs1, CvMat* camera_matrix2, CvMat* dist_coeffs2, CvSize image_size, CvMat* R, CvMat* T, CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0), CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)), int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC)); #define CV_CALIB_ZERO_DISPARITY 1024 /* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both views parallel (=> to make all the epipolar lines horizontal or vertical) */ CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2, const CvMat* dist_coeffs1, const CvMat* dist_coeffs2, CvSize image_size, const CvMat* R, const CvMat* T, CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2, CvMat* Q CV_DEFAULT(0), int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY), double alpha CV_DEFAULT(-1), CvSize new_image_size CV_DEFAULT(cvSize(0,0)), CvRect* valid_pix_ROI1 CV_DEFAULT(0), CvRect* valid_pix_ROI2 CV_DEFAULT(0)); /* Computes rectification transformations for uncalibrated pair of images using a set of point correspondences */ CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2, const CvMat* F, CvSize img_size, CvMat* H1, CvMat* H2, double threshold CV_DEFAULT(5)); /* stereo correspondence parameters and functions */ #define CV_STEREO_BM_NORMALIZED_RESPONSE 0 #define CV_STEREO_BM_XSOBEL 1 /* Block matching algorithm structure */ typedef struct CvStereoBMState { // pre-filtering (normalization of input images) int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now int preFilterSize; // averaging window size: ~5x5..21x21 int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap] // correspondence using Sum of Absolute Difference (SAD) int SADWindowSize; // ~5x5..21x21 int minDisparity; // minimum disparity (can be negative) int numberOfDisparities; // maximum disparity - minimum disparity (> 0) // post-filtering int textureThreshold; // the disparity is only computed for pixels // with textured enough neighborhood int uniquenessRatio; // accept the computed disparity d* only if // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.) // for any d != d*+/-1 within the search range. int speckleWindowSize; // disparity variation window int speckleRange; // acceptable range of variation in window int trySmallerWindows; // if 1, the results may be more accurate, // at the expense of slower processing CvRect roi1, roi2; int disp12MaxDiff; // temporary buffers CvMat* preFilteredImg0; CvMat* preFilteredImg1; CvMat* slidingSumBuf; CvMat* cost; CvMat* disp; } CvStereoBMState; #define CV_STEREO_BM_BASIC 0 #define CV_STEREO_BM_FISH_EYE 1 #define CV_STEREO_BM_NARROW 2 CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC), int numberOfDisparities CV_DEFAULT(0)); CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state ); CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right, CvArr* disparity, CvStereoBMState* state ); CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity, int numberOfDisparities, int SADWindowSize ); CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost, int minDisparity, int numberOfDisparities, int disp12MaxDiff CV_DEFAULT(1) ); /* Kolmogorov-Zabin stereo-correspondence algorithm (a.k.a. KZ1) */ #define CV_STEREO_GC_OCCLUDED SHRT_MAX typedef struct CvStereoGCState { int Ithreshold; int interactionRadius; float K, lambda, lambda1, lambda2; int occlusionCost; int minDisparity; int numberOfDisparities; int maxIters; CvMat* left; CvMat* right; CvMat* dispLeft; CvMat* dispRight; CvMat* ptrLeft; CvMat* ptrRight; CvMat* vtxBuf; CvMat* edgeBuf; } CvStereoGCState; CVAPI(CvStereoGCState*) cvCreateStereoGCState( int numberOfDisparities, int maxIters ); CVAPI(void) cvReleaseStereoGCState( CvStereoGCState** state ); CVAPI(void) cvFindStereoCorrespondenceGC( const CvArr* left, const CvArr* right, CvArr* disparityLeft, CvArr* disparityRight, CvStereoGCState* state, int useDisparityGuess CV_DEFAULT(0) ); /* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */ CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage, CvArr* _3dImage, const CvMat* Q, int handleMissingValues CV_DEFAULT(0) ); #ifdef __cplusplus } ////////////////////////////////////////////////////////////////////////////////////////// class CV_EXPORTS CvLevMarq { public: CvLevMarq(); CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria= cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), bool completeSymmFlag=false ); ~CvLevMarq(); void init( int nparams, int nerrs, CvTermCriteria criteria= cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), bool completeSymmFlag=false ); bool update( const CvMat*& param, CvMat*& J, CvMat*& err ); bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm ); void clear(); void step(); enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 }; cv::Ptr mask; cv::Ptr prevParam; cv::Ptr param; cv::Ptr J; cv::Ptr err; cv::Ptr JtJ; cv::Ptr JtJN; cv::Ptr JtErr; cv::Ptr JtJV; cv::Ptr JtJW; double prevErrNorm, errNorm; int lambdaLg10; CvTermCriteria criteria; int state; int iters; bool completeSymmFlag; }; namespace cv { //! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation CV_EXPORTS_W void Rodrigues(const Mat& src, CV_OUT Mat& dst); //! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation. Also computes the Jacobian matrix CV_EXPORTS_AS(RodriguesJ) void Rodrigues(const Mat& src, CV_OUT Mat& dst, CV_OUT Mat& jacobian); //! type of the robust estimation algorithm enum { LMEDS=4, //!< least-median algorithm RANSAC=8 //!< RANSAC algorithm }; //! computes the best-fit perspective transformation mapping srcPoints to dstPoints. CV_EXPORTS_AS(findHomographyAndOutliers) Mat findHomography( const Mat& srcPoints, const Mat& dstPoints, CV_OUT Mat& mask, int method=0, double ransacReprojThreshold=3 ); //! computes the best-fit perspective transformation mapping srcPoints to dstPoints. CV_EXPORTS Mat findHomography( const Mat& srcPoints, const Mat& dstPoints, vector& mask, int method=0, double ransacReprojThreshold=3 ); //! computes the best-fit perspective transformation mapping srcPoints to dstPoints. CV_EXPORTS_W Mat findHomography( const Mat& srcPoints, const Mat& dstPoints, int method=0, double ransacReprojThreshold=3 ); //! Computes RQ decomposition of 3x3 matrix CV_EXPORTS void RQDecomp3x3( const Mat& M, Mat& R, Mat& Q ); //! Computes RQ decomposition of 3x3 matrix. Also, decomposes the output orthogonal matrix into the 3 primitive rotation matrices CV_EXPORTS_W Vec3d RQDecomp3x3( const Mat& M, Mat& R, Mat& Q, CV_OUT Mat& Qx, CV_OUT Mat& Qy, CV_OUT Mat& Qz ); //! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector CV_EXPORTS void decomposeProjectionMatrix( const Mat& projMatrix, Mat& cameraMatrix, Mat& rotMatrix, Mat& transVect ); //! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector. The rotation matrix is further decomposed CV_EXPORTS_W void decomposeProjectionMatrix( const Mat& projMatrix, CV_OUT Mat& cameraMatrix, CV_OUT Mat& rotMatrix, CV_OUT Mat& transVect, CV_OUT Mat& rotMatrixX, CV_OUT Mat& rotMatrixY, CV_OUT Mat& rotMatrixZ, CV_OUT Vec3d& eulerAngles ); //! computes derivatives of the matrix product w.r.t each of the multiplied matrix coefficients CV_EXPORTS_W void matMulDeriv( const Mat& A, const Mat& B, CV_OUT Mat& dABdA, CV_OUT Mat& dABdB ); //! composes 2 [R|t] transformations together CV_EXPORTS_W void composeRT( const Mat& rvec1, const Mat& tvec1, const Mat& rvec2, const Mat& tvec2, CV_OUT Mat& rvec3, CV_OUT Mat& tvec3 ); //! composes 2 [R|t] transformations together. Also computes the derivatives of the result w.r.t the arguments CV_EXPORTS_AS(composeRT_J) void composeRT( const Mat& rvec1, const Mat& tvec1, const Mat& rvec2, const Mat& tvec2, CV_OUT Mat& rvec3, CV_OUT Mat& tvec3, CV_OUT Mat& dr3dr1, CV_OUT Mat& dr3dt1, CV_OUT Mat& dr3dr2, CV_OUT Mat& dr3dt2, CV_OUT Mat& dt3dr1, CV_OUT Mat& dt3dt1, CV_OUT Mat& dt3dr2, CV_OUT Mat& dt3dt2 ); //! projects points from the model coordinate space to the image coordinates. Takes the intrinsic and extrinsic camera parameters into account CV_EXPORTS void projectPoints( const Mat& objectPoints, const Mat& rvec, const Mat& tvec, const Mat& cameraMatrix, const Mat& distCoeffs, CV_OUT vector& imagePoints ); //! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters CV_EXPORTS void projectPoints( const Mat& objectPoints, const Mat& rvec, const Mat& tvec, const Mat& cameraMatrix, const Mat& distCoeffs, CV_OUT vector& imagePoints, CV_OUT Mat& dpdrot, CV_OUT Mat& dpdt, CV_OUT Mat& dpdf, CV_OUT Mat& dpdc, CV_OUT Mat& dpddist, double aspectRatio=0 ); //! computes the camera pose from a few 3D points and the corresponding projections. The outliers are not handled. CV_EXPORTS_W void solvePnP( const Mat& objectPoints, const Mat& imagePoints, const Mat& cameraMatrix, const Mat& distCoeffs, CV_OUT Mat& rvec, CV_OUT Mat& tvec, bool useExtrinsicGuess=false ); //! initializes camera matrix from a few 3D points and the corresponding projections. CV_EXPORTS Mat initCameraMatrix2D( const vector >& objectPoints, const vector >& imagePoints, Size imageSize, double aspectRatio=1. ); enum { CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2, CALIB_CB_FILTER_QUADS = 4, CALIB_CB_FAST_CHECK = 8 }; //! finds checkerboard pattern of the specified size in the image CV_EXPORTS bool findChessboardCorners( const Mat& image, Size patternSize, CV_OUT vector& corners, int flags=CALIB_CB_ADAPTIVE_THRESH+ CALIB_CB_NORMALIZE_IMAGE ); //! draws the checkerboard pattern (found or partly found) in the image CV_EXPORTS_W void drawChessboardCorners( Mat& image, Size patternSize, const Mat& corners, bool patternWasFound ); enum { CALIB_USE_INTRINSIC_GUESS = 1, CALIB_FIX_ASPECT_RATIO = 2, CALIB_FIX_PRINCIPAL_POINT = 4, CALIB_ZERO_TANGENT_DIST = 8, CALIB_FIX_FOCAL_LENGTH = 16, CALIB_FIX_K1 = 32, CALIB_FIX_K2 = 64, CALIB_FIX_K3 = 128, CALIB_FIX_K4 = 2048, CALIB_FIX_K5 = 4096, CALIB_FIX_K6 = 8192, // only for stereo CALIB_FIX_INTRINSIC = 256, CALIB_SAME_FOCAL_LENGTH = 512, // for stereo rectification CALIB_ZERO_DISPARITY = 1024 }; //! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern. CV_EXPORTS double calibrateCamera( const vector >& objectPoints, const vector >& imagePoints, Size imageSize, CV_IN_OUT Mat& cameraMatrix, CV_IN_OUT Mat& distCoeffs, CV_OUT vector& rvecs, CV_OUT vector& tvecs, int flags=0 ); //! computes several useful camera characteristics from the camera matrix, camera frame resolution and the physical sensor size. CV_EXPORTS_W void calibrationMatrixValues( const Mat& cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, CV_OUT double& fovx, CV_OUT double& fovy, CV_OUT double& focalLength, CV_OUT Point2d& principalPoint, CV_OUT double& aspectRatio ); //! finds intrinsic and extrinsic parameters of a stereo camera CV_EXPORTS double stereoCalibrate( const vector >& objectPoints, const vector >& imagePoints1, const vector >& imagePoints2, CV_IN_OUT Mat& cameraMatrix1, CV_IN_OUT Mat& distCoeffs1, CV_IN_OUT Mat& cameraMatrix2, CV_IN_OUT Mat& distCoeffs2, Size imageSize, CV_OUT Mat& R, CV_OUT Mat& T, CV_OUT Mat& E, CV_OUT Mat& F, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+ TermCriteria::EPS, 30, 1e-6), int flags=CALIB_FIX_INTRINSIC ); //! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters CV_EXPORTS void stereoRectify( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix2, const Mat& distCoeffs2, Size imageSize, const Mat& R, const Mat& T, CV_OUT Mat& R1, CV_OUT Mat& R2, CV_OUT Mat& P1, CV_OUT Mat& P2, CV_OUT Mat& Q, int flags=CALIB_ZERO_DISPARITY ); //! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters CV_EXPORTS_W void stereoRectify( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix2, const Mat& distCoeffs2, Size imageSize, const Mat& R, const Mat& T, CV_OUT Mat& R1, CV_OUT Mat& R2, CV_OUT Mat& P1, CV_OUT Mat& P2, CV_OUT Mat& Q, double alpha, Size newImageSize=Size(), CV_OUT Rect* validPixROI1=0, CV_OUT Rect* validPixROI2=0, int flags=CALIB_ZERO_DISPARITY ); //! computes the rectification transformation for an uncalibrated stereo camera (zero distortion is assumed) CV_EXPORTS_W bool stereoRectifyUncalibrated( const Mat& points1, const Mat& points2, const Mat& F, Size imgSize, CV_OUT Mat& H1, CV_OUT Mat& H2, double threshold=5 ); //! computes the rectification transformations for 3-head camera, where all the heads are on the same line. CV_EXPORTS float rectify3Collinear( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix2, const Mat& distCoeffs2, const Mat& cameraMatrix3, const Mat& distCoeffs3, const vector >& imgpt1, const vector >& imgpt3, Size imageSize, const Mat& R12, const Mat& T12, const Mat& R13, const Mat& T13, CV_OUT Mat& R1, CV_OUT Mat& R2, CV_OUT Mat& R3, CV_OUT Mat& P1, CV_OUT Mat& P2, CV_OUT Mat& P3, CV_OUT Mat& Q, double alpha, Size newImgSize, CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags ); //! returns the optimal new camera matrix CV_EXPORTS_W Mat getOptimalNewCameraMatrix( const Mat& cameraMatrix, const Mat& distCoeffs, Size imageSize, double alpha, Size newImgSize=Size(), CV_OUT Rect* validPixROI=0); //! converts point coordinates from normal pixel coordinates to homogeneous coordinates ((x,y)->(x,y,1)) CV_EXPORTS void convertPointsHomogeneous( const Mat& src, CV_OUT vector& dst ); //! converts point coordinates from homogeneous to normal pixel coordinates ((x,y,z)->(x/z, y/z)) CV_EXPORTS void convertPointsHomogeneous( const Mat& src, CV_OUT vector& dst ); //! the algorithm for finding fundamental matrix enum { FM_7POINT = 1, //!< 7-point algorithm FM_8POINT = 2, //!< 8-point algorithm FM_LMEDS = 4, //!< least-median algorithm FM_RANSAC = 8 //!< RANSAC algorithm }; //! finds fundamental matrix from a set of corresponding 2D points CV_EXPORTS Mat findFundamentalMat( const Mat& points1, const Mat& points2, CV_OUT vector& mask, int method=FM_RANSAC, double param1=3., double param2=0.99 ); //! finds fundamental matrix from a set of corresponding 2D points CV_EXPORTS_W Mat findFundamentalMat( const Mat& points1, const Mat& points2, int method=FM_RANSAC, double param1=3., double param2=0.99 ); //! finds coordinates of epipolar lines corresponding the specified points CV_EXPORTS void computeCorrespondEpilines( const Mat& points1, int whichImage, const Mat& F, CV_OUT vector& lines ); template<> CV_EXPORTS void Ptr::delete_obj(); /*! Block Matching Stereo Correspondence Algorithm The class implements BM stereo correspondence algorithm by K. Konolige. */ class CV_EXPORTS_W StereoBM { public: enum { PREFILTER_NORMALIZED_RESPONSE = 0, PREFILTER_XSOBEL = 1, BASIC_PRESET=0, FISH_EYE_PRESET=1, NARROW_PRESET=2 }; //! the default constructor CV_WRAP StereoBM(); //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size CV_WRAP StereoBM(int preset, int ndisparities=0, int SADWindowSize=21); //! the method that reinitializes the state. The previous content is destroyed void init(int preset, int ndisparities=0, int SADWindowSize=21); //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair CV_WRAP_AS(compute) void operator()( const Mat& left, const Mat& right, Mat& disparity, int disptype=CV_16S ); //! pointer to the underlying CvStereoBMState Ptr state; }; /*! Semi-Global Block Matching Stereo Correspondence Algorithm The class implements the original SGBM stereo correspondence algorithm by H. Hirschmuller and some its modification. */ class CV_EXPORTS_W StereoSGBM { public: enum { DISP_SHIFT=4, DISP_SCALE = (1<(X,Y,Z) using the matrix Q returned by cv::stereoRectify CV_EXPORTS_W void reprojectImageTo3D( const Mat& disparity, CV_OUT Mat& _3dImage, const Mat& Q, bool handleMissingValues=false ); } #endif #include "opencv2/calib3d/compat_c.h" #endif