#include #include #include #include "opencv2/core/utility.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/ocl/ocl.hpp" #include "opencv2/video/video.hpp" using namespace std; using namespace cv; using namespace cv::ocl; typedef unsigned char uchar; #define LOOP_NUM 10 int64 work_begin = 0; int64 work_end = 0; static void workBegin() { work_begin = getTickCount(); } static void workEnd() { work_end += (getTickCount() - work_begin); } static double getTime(){ return work_end * 1000. / getTickFrequency(); } static void download(const oclMat& d_mat, vector& vec) { vec.clear(); vec.resize(d_mat.cols); Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]); d_mat.download(mat); } static void download(const oclMat& d_mat, vector& vec) { vec.clear(); vec.resize(d_mat.cols); Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]); d_mat.download(mat); } static void drawArrows(Mat& frame, const vector& prevPts, const vector& nextPts, const vector& status, Scalar line_color = Scalar(0, 0, 255)) { for (size_t i = 0; i < prevPts.size(); ++i) { if (status[i]) { int line_thickness = 1; Point p = prevPts[i]; Point q = nextPts[i]; double angle = atan2((double) p.y - q.y, (double) p.x - q.x); double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) ); if (hypotenuse < 1.0) continue; // Here we lengthen the arrow by a factor of three. q.x = (int) (p.x - 3 * hypotenuse * cos(angle)); q.y = (int) (p.y - 3 * hypotenuse * sin(angle)); // Now we draw the main line of the arrow. line(frame, p, q, line_color, line_thickness); // Now draw the tips of the arrow. I do some scaling so that the // tips look proportional to the main line of the arrow. p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4)); p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4)); line(frame, p, q, line_color, line_thickness); p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4)); p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4)); line(frame, p, q, line_color, line_thickness); } } } int main(int argc, const char* argv[]) { static std::vector ocl_info; ocl::getDevice(ocl_info); //if you want to use undefault device, set it here setDevice(ocl_info[0]); //set this to save kernel compile time from second time you run ocl::setBinpath("./"); const char* keys = "{ help h | false | print help message }" "{ left l | | specify left image }" "{ right r | | specify right image }" "{ camera c | 0 | enable camera capturing }" "{ use_cpu s | false | use cpu or gpu to process the image }" "{ video v | | use video as input }" "{ points | 1000 | specify points count [GoodFeatureToTrack] }" "{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }"; CommandLineParser cmd(argc, argv, keys); if (cmd.has("help")) { cmd.printMessage(); return 0; } bool defaultPicturesFail = false; string fname0 = cmd.get("left"); string fname1 = cmd.get("right"); string vdofile = cmd.get("video"); int points = cmd.get("points"); double minDist = cmd.get("min_dist"); bool useCPU = cmd.has("s"); bool useCamera = cmd.has("c"); int inputName = cmd.get("c"); oclMat d_nextPts, d_status; GoodFeaturesToTrackDetector_OCL d_features(points); Mat frame0 = imread(fname0, cv::IMREAD_GRAYSCALE); Mat frame1 = imread(fname1, cv::IMREAD_GRAYSCALE); PyrLKOpticalFlow d_pyrLK; vector pts(points); vector nextPts(points); vector status(points); vector err; if (frame0.empty() || frame1.empty()) { useCamera = true; defaultPicturesFail = true; VideoCapture capture(inputName); if (!capture.isOpened()) { cout << "Can't load input images" << endl; return -1; } } cout << "Points count : " << points << endl << endl; if (useCamera) { VideoCapture capture; Mat frame, frameCopy; Mat frame0Gray, frame1Gray; Mat ptr0, ptr1; if(vdofile == "") capture.open( inputName ); else capture.open(vdofile.c_str()); int c = inputName ; if(!capture.isOpened()) { if(vdofile == "") cout << "Capture from CAM " << c << " didn't work" << endl; else cout << "Capture from file " << vdofile << " failed" <= 0 ) goto _cleanup_; } waitKey(0); _cleanup_: capture.release(); } else { nocamera: for(int i = 0; i <= LOOP_NUM;i ++) { cout << "loop" << i << endl; if (i > 0) workBegin(); if (useCPU) { goodFeaturesToTrack(frame0, pts, points, 0.01, minDist); calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err); } else { oclMat d_img(frame0), d_prevPts; d_features(d_img, d_prevPts); d_pyrLK.sparse(d_img, oclMat(frame1), d_prevPts, d_nextPts, d_status); d_features.downloadPoints(d_prevPts, pts); download(d_nextPts, nextPts); download(d_status, status); } if (i > 0 && i <= LOOP_NUM) workEnd(); if (i == LOOP_NUM) { if (useCPU) cout << "average CPU time (noCamera) : "; else cout << "average GPU time (noCamera) : "; cout << getTime() / LOOP_NUM << " ms" << endl; drawArrows(frame0, pts, nextPts, status, Scalar(255, 0, 0)); imshow("PyrLK [Sparse]", frame0); } } } waitKey(); return 0; }