/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #define ICV_DIST_SHIFT 16 #define ICV_INIT_DIST0 (INT_MAX >> 2) static CvStatus icvInitTopBottom( int* temp, int tempstep, CvSize size, int border ) { int i, j; for( i = 0; i < border; i++ ) { int* ttop = (int*)(temp + i*tempstep); int* tbottom = (int*)(temp + (size.height + border*2 - i - 1)*tempstep); for( j = 0; j < size.width + border*2; j++ ) { ttop[j] = ICV_INIT_DIST0; tbottom[j] = ICV_INIT_DIST0; } } return CV_OK; } static CvStatus CV_STDCALL icvDistanceTransform_3x3_C1R( const uchar* src, int srcstep, int* temp, int step, float* dist, int dststep, CvSize size, const float* metrics ) { const int BORDER = 1; int i, j; const int HV_DIST = CV_FLT_TO_FIX( metrics[0], ICV_DIST_SHIFT ); const int DIAG_DIST = CV_FLT_TO_FIX( metrics[1], ICV_DIST_SHIFT ); const float scale = 1.f/(1 << ICV_DIST_SHIFT); srcstep /= sizeof(src[0]); step /= sizeof(temp[0]); dststep /= sizeof(dist[0]); icvInitTopBottom( temp, step, size, BORDER ); // forward pass for( i = 0; i < size.height; i++ ) { const uchar* s = src + i*srcstep; int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER; for( j = 0; j < BORDER; j++ ) tmp[-j-1] = tmp[size.width + j] = ICV_INIT_DIST0; for( j = 0; j < size.width; j++ ) { if( !s[j] ) tmp[j] = 0; else { int t0 = tmp[j-step-1] + DIAG_DIST; int t = tmp[j-step] + HV_DIST; if( t0 > t ) t0 = t; t = tmp[j-step+1] + DIAG_DIST; if( t0 > t ) t0 = t; t = tmp[j-1] + HV_DIST; if( t0 > t ) t0 = t; tmp[j] = t0; } } } // backward pass for( i = size.height - 1; i >= 0; i-- ) { float* d = (float*)(dist + i*dststep); int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER; for( j = size.width - 1; j >= 0; j-- ) { int t0 = tmp[j]; if( t0 > HV_DIST ) { int t = tmp[j+step+1] + DIAG_DIST; if( t0 > t ) t0 = t; t = tmp[j+step] + HV_DIST; if( t0 > t ) t0 = t; t = tmp[j+step-1] + DIAG_DIST; if( t0 > t ) t0 = t; t = tmp[j+1] + HV_DIST; if( t0 > t ) t0 = t; tmp[j] = t0; } d[j] = (float)(t0 * scale); } } return CV_OK; } static CvStatus CV_STDCALL icvDistanceTransform_5x5_C1R( const uchar* src, int srcstep, int* temp, int step, float* dist, int dststep, CvSize size, const float* metrics ) { const int BORDER = 2; int i, j; const int HV_DIST = CV_FLT_TO_FIX( metrics[0], ICV_DIST_SHIFT ); const int DIAG_DIST = CV_FLT_TO_FIX( metrics[1], ICV_DIST_SHIFT ); const int LONG_DIST = CV_FLT_TO_FIX( metrics[2], ICV_DIST_SHIFT ); const float scale = 1.f/(1 << ICV_DIST_SHIFT); srcstep /= sizeof(src[0]); step /= sizeof(temp[0]); dststep /= sizeof(dist[0]); icvInitTopBottom( temp, step, size, BORDER ); // forward pass for( i = 0; i < size.height; i++ ) { const uchar* s = src + i*srcstep; int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER; for( j = 0; j < BORDER; j++ ) tmp[-j-1] = tmp[size.width + j] = ICV_INIT_DIST0; for( j = 0; j < size.width; j++ ) { if( !s[j] ) tmp[j] = 0; else { int t0 = tmp[j-step*2-1] + LONG_DIST; int t = tmp[j-step*2+1] + LONG_DIST; if( t0 > t ) t0 = t; t = tmp[j-step-2] + LONG_DIST; if( t0 > t ) t0 = t; t = tmp[j-step-1] + DIAG_DIST; if( t0 > t ) t0 = t; t = tmp[j-step] + HV_DIST; if( t0 > t ) t0 = t; t = tmp[j-step+1] + DIAG_DIST; if( t0 > t ) t0 = t; t = tmp[j-step+2] + LONG_DIST; if( t0 > t ) t0 = t; t = tmp[j-1] + HV_DIST; if( t0 > t ) t0 = t; tmp[j] = t0; } } } // backward pass for( i = size.height - 1; i >= 0; i-- ) { float* d = (float*)(dist + i*dststep); int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER; for( j = size.width - 1; j >= 0; j-- ) { int t0 = tmp[j]; if( t0 > HV_DIST ) { int t = tmp[j+step*2+1] + LONG_DIST; if( t0 > t ) t0 = t; t = tmp[j+step*2-1] + LONG_DIST; if( t0 > t ) t0 = t; t = tmp[j+step+2] + LONG_DIST; if( t0 > t ) t0 = t; t = tmp[j+step+1] + DIAG_DIST; if( t0 > t ) t0 = t; t = tmp[j+step] + HV_DIST; if( t0 > t ) t0 = t; t = tmp[j+step-1] + DIAG_DIST; if( t0 > t ) t0 = t; t = tmp[j+step-2] + LONG_DIST; if( t0 > t ) t0 = t; t = tmp[j+1] + HV_DIST; if( t0 > t ) t0 = t; tmp[j] = t0; } d[j] = (float)(t0 * scale); } } return CV_OK; } static CvStatus CV_STDCALL icvDistanceTransformEx_5x5_C1R( const uchar* src, int srcstep, int* temp, int step, float* dist, int dststep, int* labels, int lstep, CvSize size, const float* metrics ) { const int BORDER = 2; int i, j; const int HV_DIST = CV_FLT_TO_FIX( metrics[0], ICV_DIST_SHIFT ); const int DIAG_DIST = CV_FLT_TO_FIX( metrics[1], ICV_DIST_SHIFT ); const int LONG_DIST = CV_FLT_TO_FIX( metrics[2], ICV_DIST_SHIFT ); const float scale = 1.f/(1 << ICV_DIST_SHIFT); srcstep /= sizeof(src[0]); step /= sizeof(temp[0]); dststep /= sizeof(dist[0]); lstep /= sizeof(labels[0]); icvInitTopBottom( temp, step, size, BORDER ); // forward pass for( i = 0; i < size.height; i++ ) { const uchar* s = src + i*srcstep; int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER; int* lls = (int*)(labels + i*lstep); for( j = 0; j < BORDER; j++ ) tmp[-j-1] = tmp[size.width + j] = ICV_INIT_DIST0; for( j = 0; j < size.width; j++ ) { if( !s[j] ) { tmp[j] = 0; //assert( lls[j] != 0 ); } else { int t0 = ICV_INIT_DIST0, t; int l0 = 0; t = tmp[j-step*2-1] + LONG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j-lstep*2-1]; } t = tmp[j-step*2+1] + LONG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j-lstep*2+1]; } t = tmp[j-step-2] + LONG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j-lstep-2]; } t = tmp[j-step-1] + DIAG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j-lstep-1]; } t = tmp[j-step] + HV_DIST; if( t0 > t ) { t0 = t; l0 = lls[j-lstep]; } t = tmp[j-step+1] + DIAG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j-lstep+1]; } t = tmp[j-step+2] + LONG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j-lstep+2]; } t = tmp[j-1] + HV_DIST; if( t0 > t ) { t0 = t; l0 = lls[j-1]; } tmp[j] = t0; lls[j] = l0; } } } // backward pass for( i = size.height - 1; i >= 0; i-- ) { float* d = (float*)(dist + i*dststep); int* tmp = (int*)(temp + (i+BORDER)*step) + BORDER; int* lls = (int*)(labels + i*lstep); for( j = size.width - 1; j >= 0; j-- ) { int t0 = tmp[j]; int l0 = lls[j]; if( t0 > HV_DIST ) { int t = tmp[j+step*2+1] + LONG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j+lstep*2+1]; } t = tmp[j+step*2-1] + LONG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j+lstep*2-1]; } t = tmp[j+step+2] + LONG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j+lstep+2]; } t = tmp[j+step+1] + DIAG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j+lstep+1]; } t = tmp[j+step] + HV_DIST; if( t0 > t ) { t0 = t; l0 = lls[j+lstep]; } t = tmp[j+step-1] + DIAG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j+lstep-1]; } t = tmp[j+step-2] + LONG_DIST; if( t0 > t ) { t0 = t; l0 = lls[j+lstep-2]; } t = tmp[j+1] + HV_DIST; if( t0 > t ) { t0 = t; l0 = lls[j+1]; } tmp[j] = t0; lls[j] = l0; } d[j] = (float)(t0 * scale); } } return CV_OK; } static CvStatus icvGetDistanceTransformMask( int maskType, float *metrics ) { if( !metrics ) return CV_NULLPTR_ERR; switch (maskType) { case 30: metrics[0] = 1.0f; metrics[1] = 1.0f; break; case 31: metrics[0] = 1.0f; metrics[1] = 2.0f; break; case 32: metrics[0] = 0.955f; metrics[1] = 1.3693f; break; case 50: metrics[0] = 1.0f; metrics[1] = 1.0f; metrics[2] = 2.0f; break; case 51: metrics[0] = 1.0f; metrics[1] = 2.0f; metrics[2] = 3.0f; break; case 52: metrics[0] = 1.0f; metrics[1] = 1.4f; metrics[2] = 2.1969f; break; default: return CV_BADRANGE_ERR; } return CV_OK; } namespace cv { struct DTColumnInvoker { DTColumnInvoker( const CvMat* _src, CvMat* _dst, const int* _sat_tab, const float* _sqr_tab) { src = _src; dst = _dst; sat_tab = _sat_tab + src->rows*2 + 1; sqr_tab = _sqr_tab; } void operator()( const BlockedRange& range ) const { int i, i1 = range.begin(), i2 = range.end(); int m = src->rows; size_t sstep = src->step, dstep = dst->step/sizeof(float); AutoBuffer _d(m); int* d = _d; for( i = i1; i < i2; i++ ) { const uchar* sptr = src->data.ptr + i + (m-1)*sstep; float* dptr = dst->data.fl + i; int j, dist = m-1; for( j = m-1; j >= 0; j--, sptr -= sstep ) { dist = (dist + 1) & (sptr[0] == 0 ? 0 : -1); d[j] = dist; } dist = m-1; for( j = 0; j < m; j++, dptr += dstep ) { dist = dist + 1 - sat_tab[dist - d[j]]; d[j] = dist; dptr[0] = sqr_tab[dist]; } } } const CvMat* src; CvMat* dst; const int* sat_tab; const float* sqr_tab; }; struct DTRowInvoker { DTRowInvoker( CvMat* _dst, const float* _sqr_tab, const float* _inv_tab ) { dst = _dst; sqr_tab = _sqr_tab; inv_tab = _inv_tab; } void operator()( const BlockedRange& range ) const { const float inf = 1e15f; int i, i1 = range.begin(), i2 = range.end(); int n = dst->cols; AutoBuffer _buf((n+2)*2*sizeof(float) + (n+2)*sizeof(int)); float* f = (float*)(uchar*)_buf; float* z = f + n; int* v = alignPtr((int*)(z + n + 1), sizeof(int)); for( i = i1; i < i2; i++ ) { float* d = (float*)(dst->data.ptr + i*dst->step); int p, q, k; v[0] = 0; z[0] = -inf; z[1] = inf; f[0] = d[0]; for( q = 1, k = 0; q < n; q++ ) { float fq = d[q]; f[q] = fq; for(;;k--) { p = v[k]; float s = (fq + sqr_tab[q] - d[p] - sqr_tab[p])*inv_tab[q - p]; if( s > z[k] ) { k++; v[k] = q; z[k] = s; z[k+1] = inf; break; } } } for( q = 0, k = 0; q < n; q++ ) { while( z[k+1] < q ) k++; p = v[k]; d[q] = std::sqrt(sqr_tab[std::abs(q - p)] + f[p]); } } } CvMat* dst; const float* sqr_tab; const float* inv_tab; }; } static void icvTrueDistTrans( const CvMat* src, CvMat* dst ) { const float inf = 1e15f; if( !CV_ARE_SIZES_EQ( src, dst )) CV_Error( CV_StsUnmatchedSizes, "" ); if( CV_MAT_TYPE(src->type) != CV_8UC1 || CV_MAT_TYPE(dst->type) != CV_32FC1 ) CV_Error( CV_StsUnsupportedFormat, "The input image must have 8uC1 type and the output one must have 32fC1 type" ); int i, m = src->rows, n = src->cols; cv::AutoBuffer _buf(std::max(m*2*sizeof(float) + (m*3+1)*sizeof(int), n*2*sizeof(float))); // stage 1: compute 1d distance transform of each column float* sqr_tab = (float*)(uchar*)_buf; int* sat_tab = cv::alignPtr((int*)(sqr_tab + m*2), sizeof(int)); int shift = m*2; for( i = 0; i < m; i++ ) sqr_tab[i] = (float)(i*i); for( i = m; i < m*2; i++ ) sqr_tab[i] = inf; for( i = 0; i < shift; i++ ) sat_tab[i] = 0; for( ; i <= m*3; i++ ) sat_tab[i] = i - shift; cv::parallel_for(cv::BlockedRange(0, n), cv::DTColumnInvoker(src, dst, sat_tab, sqr_tab)); // stage 2: compute modified distance transform for each row float* inv_tab = sqr_tab + n; inv_tab[0] = sqr_tab[0] = 0.f; for( i = 1; i < n; i++ ) { inv_tab[i] = (float)(0.5/i); sqr_tab[i] = (float)(i*i); } cv::parallel_for(cv::BlockedRange(0, m), cv::DTRowInvoker(dst, sqr_tab, inv_tab)); } /*********************************** IPP functions *********************************/ typedef CvStatus (CV_STDCALL * CvIPPDistTransFunc)( const uchar* src, int srcstep, void* dst, int dststep, CvSize size, const void* metrics ); typedef CvStatus (CV_STDCALL * CvIPPDistTransFunc2)( uchar* src, int srcstep, CvSize size, const int* metrics ); /***********************************************************************************/ typedef CvStatus (CV_STDCALL * CvDistTransFunc)( const uchar* src, int srcstep, int* temp, int tempstep, float* dst, int dststep, CvSize size, const float* metrics ); /****************************************************************************************\ Non-inplace and Inplace 8u->8u Distance Transform for CityBlock (a.k.a. L1) metric (C) 2006 by Jay Stavinzky. \****************************************************************************************/ //BEGIN ATS ADDITION /* 8-bit grayscale distance transform function */ static void icvDistanceATS_L1_8u( const CvMat* src, CvMat* dst ) { int width = src->cols, height = src->rows; int a; uchar lut[256]; int x, y; const uchar *sbase = src->data.ptr; uchar *dbase = dst->data.ptr; int srcstep = src->step; int dststep = dst->step; CV_Assert( CV_IS_MASK_ARR( src ) && CV_MAT_TYPE( dst->type ) == CV_8UC1 ); CV_Assert( CV_ARE_SIZES_EQ( src, dst )); ////////////////////// forward scan //////////////////////// for( x = 0; x < 256; x++ ) lut[x] = CV_CAST_8U(x+1); //init first pixel to max (we're going to be skipping it) dbase[0] = (uchar)(sbase[0] == 0 ? 0 : 255); //first row (scan west only, skip first pixel) for( x = 1; x < width; x++ ) dbase[x] = (uchar)(sbase[x] == 0 ? 0 : lut[dbase[x-1]]); for( y = 1; y < height; y++ ) { sbase += srcstep; dbase += dststep; //for left edge, scan north only a = sbase[0] == 0 ? 0 : lut[dbase[-dststep]]; dbase[0] = (uchar)a; for( x = 1; x < width; x++ ) { a = sbase[x] == 0 ? 0 : lut[MIN(a, dbase[x - dststep])]; dbase[x] = (uchar)a; } } ////////////////////// backward scan /////////////////////// a = dbase[width-1]; // do last row east pixel scan here (skip bottom right pixel) for( x = width - 2; x >= 0; x-- ) { a = lut[a]; dbase[x] = (uchar)(CV_CALC_MIN_8U(a, dbase[x])); } // right edge is the only error case for( y = height - 2; y >= 0; y-- ) { dbase -= dststep; // do right edge a = lut[dbase[width-1+dststep]]; dbase[width-1] = (uchar)(MIN(a, dbase[width-1])); for( x = width - 2; x >= 0; x-- ) { int b = dbase[x+dststep]; a = lut[MIN(a, b)]; dbase[x] = (uchar)(MIN(a, dbase[x])); } } } //END ATS ADDITION /* Wrapper function for distance transform group */ CV_IMPL void cvDistTransform( const void* srcarr, void* dstarr, int distType, int maskSize, const float *mask, void* labelsarr ) { cv::Ptr temp; cv::Ptr src_copy; cv::Ptr st; float _mask[5] = {0}; CvMat srcstub, *src = (CvMat*)srcarr; CvMat dststub, *dst = (CvMat*)dstarr; CvMat lstub, *labels = (CvMat*)labelsarr; CvSize size; //CvIPPDistTransFunc ipp_func = 0; //CvIPPDistTransFunc2 ipp_inp_func = 0; src = cvGetMat( src, &srcstub ); dst = cvGetMat( dst, &dststub ); if( !CV_IS_MASK_ARR( src ) || (CV_MAT_TYPE( dst->type ) != CV_32FC1 && (CV_MAT_TYPE(dst->type) != CV_8UC1 || distType != CV_DIST_L1 || labels)) ) CV_Error( CV_StsUnsupportedFormat, "source image must be 8uC1 and the distance map must be 32fC1 " "(or 8uC1 in case of simple L1 distance transform)" ); if( !CV_ARE_SIZES_EQ( src, dst )) CV_Error( CV_StsUnmatchedSizes, "the source and the destination images must be of the same size" ); if( maskSize != CV_DIST_MASK_3 && maskSize != CV_DIST_MASK_5 && maskSize != CV_DIST_MASK_PRECISE ) CV_Error( CV_StsBadSize, "Mask size should be 3 or 5 or 0 (presize)" ); if( distType == CV_DIST_C || distType == CV_DIST_L1 ) maskSize = !labels ? CV_DIST_MASK_3 : CV_DIST_MASK_5; else if( distType == CV_DIST_L2 && labels ) maskSize = CV_DIST_MASK_5; if( maskSize == CV_DIST_MASK_PRECISE ) { icvTrueDistTrans( src, dst ); return; } if( labels ) { labels = cvGetMat( labels, &lstub ); if( CV_MAT_TYPE( labels->type ) != CV_32SC1 ) CV_Error( CV_StsUnsupportedFormat, "the output array of labels must be 32sC1" ); if( !CV_ARE_SIZES_EQ( labels, dst )) CV_Error( CV_StsUnmatchedSizes, "the array of labels has a different size" ); if( maskSize == CV_DIST_MASK_3 ) CV_Error( CV_StsNotImplemented, "3x3 mask can not be used for \"labeled\" distance transform. Use 5x5 mask" ); } if( distType == CV_DIST_C || distType == CV_DIST_L1 || distType == CV_DIST_L2 ) { icvGetDistanceTransformMask( (distType == CV_DIST_C ? 0 : distType == CV_DIST_L1 ? 1 : 2) + maskSize*10, _mask ); } else if( distType == CV_DIST_USER ) { if( !mask ) CV_Error( CV_StsNullPtr, "" ); memcpy( _mask, mask, (maskSize/2 + 1)*sizeof(float)); } /*if( !labels ) { if( CV_MAT_TYPE(dst->type) == CV_32FC1 ) ipp_func = (CvIPPDistTransFunc)(maskSize == CV_DIST_MASK_3 ? icvDistanceTransform_3x3_8u32f_C1R_p : icvDistanceTransform_5x5_8u32f_C1R_p); else if( src->data.ptr != dst->data.ptr ) ipp_func = (CvIPPDistTransFunc)icvDistanceTransform_3x3_8u_C1R_p; else ipp_inp_func = icvDistanceTransform_3x3_8u_C1IR_p; }*/ size = cvGetMatSize(src); /*if( (ipp_func || ipp_inp_func) && src->cols >= 4 && src->rows >= 2 ) { int _imask[3]; _imask[0] = cvRound(_mask[0]); _imask[1] = cvRound(_mask[1]); _imask[2] = cvRound(_mask[2]); if( ipp_func ) { IPPI_CALL( ipp_func( src->data.ptr, src->step, dst->data.fl, dst->step, size, CV_MAT_TYPE(dst->type) == CV_8UC1 ? (void*)_imask : (void*)_mask )); } else { IPPI_CALL( ipp_inp_func( src->data.ptr, src->step, size, _imask )); } } else*/ if( CV_MAT_TYPE(dst->type) == CV_8UC1 ) { icvDistanceATS_L1_8u( src, dst ); } else { int border = maskSize == CV_DIST_MASK_3 ? 1 : 2; temp = cvCreateMat( size.height + border*2, size.width + border*2, CV_32SC1 ); if( !labels ) { CvDistTransFunc func = maskSize == CV_DIST_MASK_3 ? icvDistanceTransform_3x3_C1R : icvDistanceTransform_5x5_C1R; func( src->data.ptr, src->step, temp->data.i, temp->step, dst->data.fl, dst->step, size, _mask ); } else { CvSeq *contours = 0; CvPoint top_left = {0,0}, bottom_right = {size.width-1,size.height-1}; int label; st = cvCreateMemStorage(); src_copy = cvCreateMat( size.height, size.width, src->type ); cvCmpS( src, 0, src_copy, CV_CMP_EQ ); cvFindContours( src_copy, st, &contours, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); cvZero( labels ); for( label = 1; contours != 0; contours = contours->h_next, label++ ) { CvScalar area_color = cvScalarAll(label); cvDrawContours( labels, contours, area_color, area_color, -255, -1, 8 ); } cvCopy( src, src_copy ); cvRectangle( src_copy, top_left, bottom_right, cvScalarAll(255), 1, 8 ); icvDistanceTransformEx_5x5_C1R( src_copy->data.ptr, src_copy->step, temp->data.i, temp->step, dst->data.fl, dst->step, labels->data.i, labels->step, size, _mask ); } } } void cv::distanceTransform( InputArray _src, OutputArray _dst, OutputArray _labels, int distanceType, int maskSize ) { Mat src = _src.getMat(); _dst.create(src.size(), CV_32F); _labels.create(src.size(), CV_32S); CvMat c_src = src, c_dst = _dst.getMat(), c_labels = _labels.getMat(); cvDistTransform(&c_src, &c_dst, distanceType, maskSize, 0, &c_labels); } void cv::distanceTransform( InputArray _src, OutputArray _dst, int distanceType, int maskSize ) { Mat src = _src.getMat(); _dst.create(src.size(), CV_32F); Mat dst = _dst.getMat(); CvMat c_src = src, c_dst = _dst.getMat(); cvDistTransform(&c_src, &c_dst, distanceType, maskSize, 0, 0); } /* End of file. */