/* dlarrd.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; static integer c__0 = 0; /* Subroutine */ int dlarrd_(char *range, char *order, integer *n, doublereal *vl, doublereal *vu, integer *il, integer *iu, doublereal *gers, doublereal *reltol, doublereal *d__, doublereal *e, doublereal *e2, doublereal *pivmin, integer *nsplit, integer *isplit, integer *m, doublereal *w, doublereal *werr, doublereal *wl, doublereal *wu, integer *iblock, integer *indexw, doublereal *work, integer *iwork, integer *info) { /* System generated locals */ integer i__1, i__2, i__3; doublereal d__1, d__2; /* Builtin functions */ double log(doublereal); /* Local variables */ integer i__, j, ib, ie, je, nb; doublereal gl; integer im, in; doublereal gu; integer iw, jee; doublereal eps; integer nwl; doublereal wlu, wul; integer nwu; doublereal tmp1, tmp2; integer iend, jblk, ioff, iout, itmp1, itmp2, jdisc; extern logical lsame_(char *, char *); integer iinfo; doublereal atoli; integer iwoff, itmax; doublereal wkill, rtoli, uflow, tnorm; extern doublereal dlamch_(char *); integer ibegin; extern /* Subroutine */ int dlaebz_(integer *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); integer irange, idiscl, idumma[1]; extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer idiscu; logical ncnvrg, toofew; /* -- LAPACK auxiliary routine (version 3.2.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* -- April 2009 -- */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLARRD computes the eigenvalues of a symmetric tridiagonal */ /* matrix T to suitable accuracy. This is an auxiliary code to be */ /* called from DSTEMR. */ /* The user may ask for all eigenvalues, all eigenvalues */ /* in the half-open interval (VL, VU], or the IL-th through IU-th */ /* eigenvalues. */ /* To avoid overflow, the matrix must be scaled so that its */ /* largest element is no greater than overflow**(1/2) * */ /* underflow**(1/4) in absolute value, and for greatest */ /* accuracy, it should not be much smaller than that. */ /* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */ /* Matrix", Report CS41, Computer Science Dept., Stanford */ /* University, July 21, 1966. */ /* Arguments */ /* ========= */ /* RANGE (input) CHARACTER */ /* = 'A': ("All") all eigenvalues will be found. */ /* = 'V': ("Value") all eigenvalues in the half-open interval */ /* (VL, VU] will be found. */ /* = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */ /* entire matrix) will be found. */ /* ORDER (input) CHARACTER */ /* = 'B': ("By Block") the eigenvalues will be grouped by */ /* split-off block (see IBLOCK, ISPLIT) and */ /* ordered from smallest to largest within */ /* the block. */ /* = 'E': ("Entire matrix") */ /* the eigenvalues for the entire matrix */ /* will be ordered from smallest to */ /* largest. */ /* N (input) INTEGER */ /* The order of the tridiagonal matrix T. N >= 0. */ /* VL (input) DOUBLE PRECISION */ /* VU (input) DOUBLE PRECISION */ /* If RANGE='V', the lower and upper bounds of the interval to */ /* be searched for eigenvalues. Eigenvalues less than or equal */ /* to VL, or greater than VU, will not be returned. VL < VU. */ /* Not referenced if RANGE = 'A' or 'I'. */ /* IL (input) INTEGER */ /* IU (input) INTEGER */ /* If RANGE='I', the indices (in ascending order) of the */ /* smallest and largest eigenvalues to be returned. */ /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* Not referenced if RANGE = 'A' or 'V'. */ /* GERS (input) DOUBLE PRECISION array, dimension (2*N) */ /* The N Gerschgorin intervals (the i-th Gerschgorin interval */ /* is (GERS(2*i-1), GERS(2*i)). */ /* RELTOL (input) DOUBLE PRECISION */ /* The minimum relative width of an interval. When an interval */ /* is narrower than RELTOL times the larger (in */ /* magnitude) endpoint, then it is considered to be */ /* sufficiently small, i.e., converged. Note: this should */ /* always be at least radix*machine epsilon. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The n diagonal elements of the tridiagonal matrix T. */ /* E (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) off-diagonal elements of the tridiagonal matrix T. */ /* E2 (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) squared off-diagonal elements of the tridiagonal matrix T. */ /* PIVMIN (input) DOUBLE PRECISION */ /* The minimum pivot allowed in the Sturm sequence for T. */ /* NSPLIT (input) INTEGER */ /* The number of diagonal blocks in the matrix T. */ /* 1 <= NSPLIT <= N. */ /* ISPLIT (input) INTEGER array, dimension (N) */ /* The splitting points, at which T breaks up into submatrices. */ /* The first submatrix consists of rows/columns 1 to ISPLIT(1), */ /* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */ /* etc., and the NSPLIT-th consists of rows/columns */ /* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */ /* (Only the first NSPLIT elements will actually be used, but */ /* since the user cannot know a priori what value NSPLIT will */ /* have, N words must be reserved for ISPLIT.) */ /* M (output) INTEGER */ /* The actual number of eigenvalues found. 0 <= M <= N. */ /* (See also the description of INFO=2,3.) */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* On exit, the first M elements of W will contain the */ /* eigenvalue approximations. DLARRD computes an interval */ /* I_j = (a_j, b_j] that includes eigenvalue j. The eigenvalue */ /* approximation is given as the interval midpoint */ /* W(j)= ( a_j + b_j)/2. The corresponding error is bounded by */ /* WERR(j) = abs( a_j - b_j)/2 */ /* WERR (output) DOUBLE PRECISION array, dimension (N) */ /* The error bound on the corresponding eigenvalue approximation */ /* in W. */ /* WL (output) DOUBLE PRECISION */ /* WU (output) DOUBLE PRECISION */ /* The interval (WL, WU] contains all the wanted eigenvalues. */ /* If RANGE='V', then WL=VL and WU=VU. */ /* If RANGE='A', then WL and WU are the global Gerschgorin bounds */ /* on the spectrum. */ /* If RANGE='I', then WL and WU are computed by DLAEBZ from the */ /* index range specified. */ /* IBLOCK (output) INTEGER array, dimension (N) */ /* At each row/column j where E(j) is zero or small, the */ /* matrix T is considered to split into a block diagonal */ /* matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which */ /* block (from 1 to the number of blocks) the eigenvalue W(i) */ /* belongs. (DLARRD may use the remaining N-M elements as */ /* workspace.) */ /* INDEXW (output) INTEGER array, dimension (N) */ /* The indices of the eigenvalues within each block (submatrix); */ /* for example, INDEXW(i)= j and IBLOCK(i)=k imply that the */ /* i-th eigenvalue W(i) is the j-th eigenvalue in block k. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */ /* IWORK (workspace) INTEGER array, dimension (3*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: some or all of the eigenvalues failed to converge or */ /* were not computed: */ /* =1 or 3: Bisection failed to converge for some */ /* eigenvalues; these eigenvalues are flagged by a */ /* negative block number. The effect is that the */ /* eigenvalues may not be as accurate as the */ /* absolute and relative tolerances. This is */ /* generally caused by unexpectedly inaccurate */ /* arithmetic. */ /* =2 or 3: RANGE='I' only: Not all of the eigenvalues */ /* IL:IU were found. */ /* Effect: M < IU+1-IL */ /* Cause: non-monotonic arithmetic, causing the */ /* Sturm sequence to be non-monotonic. */ /* Cure: recalculate, using RANGE='A', and pick */ /* out eigenvalues IL:IU. In some cases, */ /* increasing the PARAMETER "FUDGE" may */ /* make things work. */ /* = 4: RANGE='I', and the Gershgorin interval */ /* initially used was too small. No eigenvalues */ /* were computed. */ /* Probable cause: your machine has sloppy */ /* floating-point arithmetic. */ /* Cure: Increase the PARAMETER "FUDGE", */ /* recompile, and try again. */ /* Internal Parameters */ /* =================== */ /* FUDGE DOUBLE PRECISION, default = 2 */ /* A "fudge factor" to widen the Gershgorin intervals. Ideally, */ /* a value of 1 should work, but on machines with sloppy */ /* arithmetic, this needs to be larger. The default for */ /* publicly released versions should be large enough to handle */ /* the worst machine around. Note that this has no effect */ /* on accuracy of the solution. */ /* Based on contributions by */ /* W. Kahan, University of California, Berkeley, USA */ /* Beresford Parlett, University of California, Berkeley, USA */ /* Jim Demmel, University of California, Berkeley, USA */ /* Inderjit Dhillon, University of Texas, Austin, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* Christof Voemel, University of California, Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --iwork; --work; --indexw; --iblock; --werr; --w; --isplit; --e2; --e; --d__; --gers; /* Function Body */ *info = 0; /* Decode RANGE */ if (lsame_(range, "A")) { irange = 1; } else if (lsame_(range, "V")) { irange = 2; } else if (lsame_(range, "I")) { irange = 3; } else { irange = 0; } /* Check for Errors */ if (irange <= 0) { *info = -1; } else if (! (lsame_(order, "B") || lsame_(order, "E"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (irange == 2) { if (*vl >= *vu) { *info = -5; } } else if (irange == 3 && (*il < 1 || *il > max(1,*n))) { *info = -6; } else if (irange == 3 && (*iu < min(*n,*il) || *iu > *n)) { *info = -7; } if (*info != 0) { return 0; } /* Initialize error flags */ *info = 0; ncnvrg = FALSE_; toofew = FALSE_; /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } /* Simplification: */ if (irange == 3 && *il == 1 && *iu == *n) { irange = 1; } /* Get machine constants */ eps = dlamch_("P"); uflow = dlamch_("U"); /* Special Case when N=1 */ /* Treat case of 1x1 matrix for quick return */ if (*n == 1) { if (irange == 1 || irange == 2 && d__[1] > *vl && d__[1] <= *vu || irange == 3 && *il == 1 && *iu == 1) { *m = 1; w[1] = d__[1]; /* The computation error of the eigenvalue is zero */ werr[1] = 0.; iblock[1] = 1; indexw[1] = 1; } return 0; } /* NB is the minimum vector length for vector bisection, or 0 */ /* if only scalar is to be done. */ nb = ilaenv_(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1); if (nb <= 1) { nb = 0; } /* Find global spectral radius */ gl = d__[1]; gu = d__[1]; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MIN */ d__1 = gl, d__2 = gers[(i__ << 1) - 1]; gl = min(d__1,d__2); /* Computing MAX */ d__1 = gu, d__2 = gers[i__ * 2]; gu = max(d__1,d__2); /* L5: */ } /* Compute global Gerschgorin bounds and spectral diameter */ /* Computing MAX */ d__1 = abs(gl), d__2 = abs(gu); tnorm = max(d__1,d__2); gl = gl - tnorm * 2. * eps * *n - *pivmin * 4.; gu = gu + tnorm * 2. * eps * *n + *pivmin * 4.; /* [JAN/28/2009] remove the line below since SPDIAM variable not use */ /* SPDIAM = GU - GL */ /* Input arguments for DLAEBZ: */ /* The relative tolerance. An interval (a,b] lies within */ /* "relative tolerance" if b-a < RELTOL*max(|a|,|b|), */ rtoli = *reltol; /* Set the absolute tolerance for interval convergence to zero to force */ /* interval convergence based on relative size of the interval. */ /* This is dangerous because intervals might not converge when RELTOL is */ /* small. But at least a very small number should be selected so that for */ /* strongly graded matrices, the code can get relatively accurate */ /* eigenvalues. */ atoli = uflow * 4. + *pivmin * 4.; if (irange == 3) { /* RANGE='I': Compute an interval containing eigenvalues */ /* IL through IU. The initial interval [GL,GU] from the global */ /* Gerschgorin bounds GL and GU is refined by DLAEBZ. */ itmax = (integer) ((log(tnorm + *pivmin) - log(*pivmin)) / log(2.)) + 2; work[*n + 1] = gl; work[*n + 2] = gl; work[*n + 3] = gu; work[*n + 4] = gu; work[*n + 5] = gl; work[*n + 6] = gu; iwork[1] = -1; iwork[2] = -1; iwork[3] = *n + 1; iwork[4] = *n + 1; iwork[5] = *il - 1; iwork[6] = *iu; dlaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, pivmin, & d__[1], &e[1], &e2[1], &iwork[5], &work[*n + 1], &work[*n + 5] , &iout, &iwork[1], &w[1], &iblock[1], &iinfo); if (iinfo != 0) { *info = iinfo; return 0; } /* On exit, output intervals may not be ordered by ascending negcount */ if (iwork[6] == *iu) { *wl = work[*n + 1]; wlu = work[*n + 3]; nwl = iwork[1]; *wu = work[*n + 4]; wul = work[*n + 2]; nwu = iwork[4]; } else { *wl = work[*n + 2]; wlu = work[*n + 4]; nwl = iwork[2]; *wu = work[*n + 3]; wul = work[*n + 1]; nwu = iwork[3]; } /* On exit, the interval [WL, WLU] contains a value with negcount NWL, */ /* and [WUL, WU] contains a value with negcount NWU. */ if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) { *info = 4; return 0; } } else if (irange == 2) { *wl = *vl; *wu = *vu; } else if (irange == 1) { *wl = gl; *wu = gu; } /* Find Eigenvalues -- Loop Over blocks and recompute NWL and NWU. */ /* NWL accumulates the number of eigenvalues .le. WL, */ /* NWU accumulates the number of eigenvalues .le. WU */ *m = 0; iend = 0; *info = 0; nwl = 0; nwu = 0; i__1 = *nsplit; for (jblk = 1; jblk <= i__1; ++jblk) { ioff = iend; ibegin = ioff + 1; iend = isplit[jblk]; in = iend - ioff; if (in == 1) { /* 1x1 block */ if (*wl >= d__[ibegin] - *pivmin) { ++nwl; } if (*wu >= d__[ibegin] - *pivmin) { ++nwu; } if (irange == 1 || *wl < d__[ibegin] - *pivmin && *wu >= d__[ ibegin] - *pivmin) { ++(*m); w[*m] = d__[ibegin]; werr[*m] = 0.; /* The gap for a single block doesn't matter for the later */ /* algorithm and is assigned an arbitrary large value */ iblock[*m] = jblk; indexw[*m] = 1; } /* Disabled 2x2 case because of a failure on the following matrix */ /* RANGE = 'I', IL = IU = 4 */ /* Original Tridiagonal, d = [ */ /* -0.150102010615740E+00 */ /* -0.849897989384260E+00 */ /* -0.128208148052635E-15 */ /* 0.128257718286320E-15 */ /* ]; */ /* e = [ */ /* -0.357171383266986E+00 */ /* -0.180411241501588E-15 */ /* -0.175152352710251E-15 */ /* ]; */ /* ELSE IF( IN.EQ.2 ) THEN */ /* * 2x2 block */ /* DISC = SQRT( (HALF*(D(IBEGIN)-D(IEND)))**2 + E(IBEGIN)**2 ) */ /* TMP1 = HALF*(D(IBEGIN)+D(IEND)) */ /* L1 = TMP1 - DISC */ /* IF( WL.GE. L1-PIVMIN ) */ /* $ NWL = NWL + 1 */ /* IF( WU.GE. L1-PIVMIN ) */ /* $ NWU = NWU + 1 */ /* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L1-PIVMIN .AND. WU.GE. */ /* $ L1-PIVMIN ) ) THEN */ /* M = M + 1 */ /* W( M ) = L1 */ /* * The uncertainty of eigenvalues of a 2x2 matrix is very small */ /* WERR( M ) = EPS * ABS( W( M ) ) * TWO */ /* IBLOCK( M ) = JBLK */ /* INDEXW( M ) = 1 */ /* ENDIF */ /* L2 = TMP1 + DISC */ /* IF( WL.GE. L2-PIVMIN ) */ /* $ NWL = NWL + 1 */ /* IF( WU.GE. L2-PIVMIN ) */ /* $ NWU = NWU + 1 */ /* IF( IRANGE.EQ.ALLRNG .OR. ( WL.LT.L2-PIVMIN .AND. WU.GE. */ /* $ L2-PIVMIN ) ) THEN */ /* M = M + 1 */ /* W( M ) = L2 */ /* * The uncertainty of eigenvalues of a 2x2 matrix is very small */ /* WERR( M ) = EPS * ABS( W( M ) ) * TWO */ /* IBLOCK( M ) = JBLK */ /* INDEXW( M ) = 2 */ /* ENDIF */ } else { /* General Case - block of size IN >= 2 */ /* Compute local Gerschgorin interval and use it as the initial */ /* interval for DLAEBZ */ gu = d__[ibegin]; gl = d__[ibegin]; tmp1 = 0.; i__2 = iend; for (j = ibegin; j <= i__2; ++j) { /* Computing MIN */ d__1 = gl, d__2 = gers[(j << 1) - 1]; gl = min(d__1,d__2); /* Computing MAX */ d__1 = gu, d__2 = gers[j * 2]; gu = max(d__1,d__2); /* L40: */ } /* [JAN/28/2009] */ /* change SPDIAM by TNORM in lines 2 and 3 thereafter */ /* line 1: remove computation of SPDIAM (not useful anymore) */ /* SPDIAM = GU - GL */ /* GL = GL - FUDGE*SPDIAM*EPS*IN - FUDGE*PIVMIN */ /* GU = GU + FUDGE*SPDIAM*EPS*IN + FUDGE*PIVMIN */ gl = gl - tnorm * 2. * eps * in - *pivmin * 2.; gu = gu + tnorm * 2. * eps * in + *pivmin * 2.; if (irange > 1) { if (gu < *wl) { /* the local block contains none of the wanted eigenvalues */ nwl += in; nwu += in; goto L70; } /* refine search interval if possible, only range (WL,WU] matters */ gl = max(gl,*wl); gu = min(gu,*wu); if (gl >= gu) { goto L70; } } /* Find negcount of initial interval boundaries GL and GU */ work[*n + 1] = gl; work[*n + in + 1] = gu; dlaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, & work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], & w[*m + 1], &iblock[*m + 1], &iinfo); if (iinfo != 0) { *info = iinfo; return 0; } nwl += iwork[1]; nwu += iwork[in + 1]; iwoff = *m - iwork[1]; /* Compute Eigenvalues */ itmax = (integer) ((log(gu - gl + *pivmin) - log(*pivmin)) / log( 2.)) + 2; dlaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, pivmin, &d__[ibegin], &e[ibegin], &e2[ibegin], idumma, & work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1], &w[*m + 1], &iblock[*m + 1], &iinfo); if (iinfo != 0) { *info = iinfo; return 0; } /* Copy eigenvalues into W and IBLOCK */ /* Use -JBLK for block number for unconverged eigenvalues. */ /* Loop over the number of output intervals from DLAEBZ */ i__2 = iout; for (j = 1; j <= i__2; ++j) { /* eigenvalue approximation is middle point of interval */ tmp1 = (work[j + *n] + work[j + in + *n]) * .5; /* semi length of error interval */ tmp2 = (d__1 = work[j + *n] - work[j + in + *n], abs(d__1)) * .5; if (j > iout - iinfo) { /* Flag non-convergence. */ ncnvrg = TRUE_; ib = -jblk; } else { ib = jblk; } i__3 = iwork[j + in] + iwoff; for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) { w[je] = tmp1; werr[je] = tmp2; indexw[je] = je - iwoff; iblock[je] = ib; /* L50: */ } /* L60: */ } *m += im; } L70: ; } /* If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU */ /* If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */ if (irange == 3) { idiscl = *il - 1 - nwl; idiscu = nwu - *iu; if (idiscl > 0) { im = 0; i__1 = *m; for (je = 1; je <= i__1; ++je) { /* Remove some of the smallest eigenvalues from the left so that */ /* at the end IDISCL =0. Move all eigenvalues up to the left. */ if (w[je] <= wlu && idiscl > 0) { --idiscl; } else { ++im; w[im] = w[je]; werr[im] = werr[je]; indexw[im] = indexw[je]; iblock[im] = iblock[je]; } /* L80: */ } *m = im; } if (idiscu > 0) { /* Remove some of the largest eigenvalues from the right so that */ /* at the end IDISCU =0. Move all eigenvalues up to the left. */ im = *m + 1; for (je = *m; je >= 1; --je) { if (w[je] >= wul && idiscu > 0) { --idiscu; } else { --im; w[im] = w[je]; werr[im] = werr[je]; indexw[im] = indexw[je]; iblock[im] = iblock[je]; } /* L81: */ } jee = 0; i__1 = *m; for (je = im; je <= i__1; ++je) { ++jee; w[jee] = w[je]; werr[jee] = werr[je]; indexw[jee] = indexw[je]; iblock[jee] = iblock[je]; /* L82: */ } *m = *m - im + 1; } if (idiscl > 0 || idiscu > 0) { /* Code to deal with effects of bad arithmetic. (If N(w) is */ /* monotone non-decreasing, this should never happen.) */ /* Some low eigenvalues to be discarded are not in (WL,WLU], */ /* or high eigenvalues to be discarded are not in (WUL,WU] */ /* so just kill off the smallest IDISCL/largest IDISCU */ /* eigenvalues, by marking the corresponding IBLOCK = 0 */ if (idiscl > 0) { wkill = *wu; i__1 = idiscl; for (jdisc = 1; jdisc <= i__1; ++jdisc) { iw = 0; i__2 = *m; for (je = 1; je <= i__2; ++je) { if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) { iw = je; wkill = w[je]; } /* L90: */ } iblock[iw] = 0; /* L100: */ } } if (idiscu > 0) { wkill = *wl; i__1 = idiscu; for (jdisc = 1; jdisc <= i__1; ++jdisc) { iw = 0; i__2 = *m; for (je = 1; je <= i__2; ++je) { if (iblock[je] != 0 && (w[je] >= wkill || iw == 0)) { iw = je; wkill = w[je]; } /* L110: */ } iblock[iw] = 0; /* L120: */ } } /* Now erase all eigenvalues with IBLOCK set to zero */ im = 0; i__1 = *m; for (je = 1; je <= i__1; ++je) { if (iblock[je] != 0) { ++im; w[im] = w[je]; werr[im] = werr[je]; indexw[im] = indexw[je]; iblock[im] = iblock[je]; } /* L130: */ } *m = im; } if (idiscl < 0 || idiscu < 0) { toofew = TRUE_; } } if (irange == 1 && *m != *n || irange == 3 && *m != *iu - *il + 1) { toofew = TRUE_; } /* If ORDER='B', do nothing the eigenvalues are already sorted by */ /* block. */ /* If ORDER='E', sort the eigenvalues from smallest to largest */ if (lsame_(order, "E") && *nsplit > 1) { i__1 = *m - 1; for (je = 1; je <= i__1; ++je) { ie = 0; tmp1 = w[je]; i__2 = *m; for (j = je + 1; j <= i__2; ++j) { if (w[j] < tmp1) { ie = j; tmp1 = w[j]; } /* L140: */ } if (ie != 0) { tmp2 = werr[ie]; itmp1 = iblock[ie]; itmp2 = indexw[ie]; w[ie] = w[je]; werr[ie] = werr[je]; iblock[ie] = iblock[je]; indexw[ie] = indexw[je]; w[je] = tmp1; werr[je] = tmp2; iblock[je] = itmp1; indexw[je] = itmp2; } /* L150: */ } } *info = 0; if (ncnvrg) { ++(*info); } if (toofew) { *info += 2; } return 0; /* End of DLARRD */ } /* dlarrd_ */