/* sgemm.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int sgemm_(char *transa, char *transb, integer *m, integer * n, integer *k, real *alpha, real *a, integer *lda, real *b, integer * ldb, real *beta, real *c__, integer *ldc) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, l, info; logical nota, notb; real temp; integer ncola; extern logical lsame_(char *, char *); integer nrowa, nrowb; extern /* Subroutine */ int xerbla_(char *, integer *); /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGEMM performs one of the matrix-matrix operations */ /* C := alpha*op( A )*op( B ) + beta*C, */ /* where op( X ) is one of */ /* op( X ) = X or op( X ) = X', */ /* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */ /* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */ /* Arguments */ /* ========== */ /* TRANSA - CHARACTER*1. */ /* On entry, TRANSA specifies the form of op( A ) to be used in */ /* the matrix multiplication as follows: */ /* TRANSA = 'N' or 'n', op( A ) = A. */ /* TRANSA = 'T' or 't', op( A ) = A'. */ /* TRANSA = 'C' or 'c', op( A ) = A'. */ /* Unchanged on exit. */ /* TRANSB - CHARACTER*1. */ /* On entry, TRANSB specifies the form of op( B ) to be used in */ /* the matrix multiplication as follows: */ /* TRANSB = 'N' or 'n', op( B ) = B. */ /* TRANSB = 'T' or 't', op( B ) = B'. */ /* TRANSB = 'C' or 'c', op( B ) = B'. */ /* Unchanged on exit. */ /* M - INTEGER. */ /* On entry, M specifies the number of rows of the matrix */ /* op( A ) and of the matrix C. M must be at least zero. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the number of columns of the matrix */ /* op( B ) and the number of columns of the matrix C. N must be */ /* at least zero. */ /* Unchanged on exit. */ /* K - INTEGER. */ /* On entry, K specifies the number of columns of the matrix */ /* op( A ) and the number of rows of the matrix op( B ). K must */ /* be at least zero. */ /* Unchanged on exit. */ /* ALPHA - REAL . */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* A - REAL array of DIMENSION ( LDA, ka ), where ka is */ /* k when TRANSA = 'N' or 'n', and is m otherwise. */ /* Before entry with TRANSA = 'N' or 'n', the leading m by k */ /* part of the array A must contain the matrix A, otherwise */ /* the leading k by m part of the array A must contain the */ /* matrix A. */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. When TRANSA = 'N' or 'n' then */ /* LDA must be at least max( 1, m ), otherwise LDA must be at */ /* least max( 1, k ). */ /* Unchanged on exit. */ /* B - REAL array of DIMENSION ( LDB, kb ), where kb is */ /* n when TRANSB = 'N' or 'n', and is k otherwise. */ /* Before entry with TRANSB = 'N' or 'n', the leading k by n */ /* part of the array B must contain the matrix B, otherwise */ /* the leading n by k part of the array B must contain the */ /* matrix B. */ /* Unchanged on exit. */ /* LDB - INTEGER. */ /* On entry, LDB specifies the first dimension of B as declared */ /* in the calling (sub) program. When TRANSB = 'N' or 'n' then */ /* LDB must be at least max( 1, k ), otherwise LDB must be at */ /* least max( 1, n ). */ /* Unchanged on exit. */ /* BETA - REAL . */ /* On entry, BETA specifies the scalar beta. When BETA is */ /* supplied as zero then C need not be set on input. */ /* Unchanged on exit. */ /* C - REAL array of DIMENSION ( LDC, n ). */ /* Before entry, the leading m by n part of the array C must */ /* contain the matrix C, except when beta is zero, in which */ /* case C need not be set on entry. */ /* On exit, the array C is overwritten by the m by n matrix */ /* ( alpha*op( A )*op( B ) + beta*C ). */ /* LDC - INTEGER. */ /* On entry, LDC specifies the first dimension of C as declared */ /* in the calling (sub) program. LDC must be at least */ /* max( 1, m ). */ /* Unchanged on exit. */ /* Level 3 Blas routine. */ /* -- Written on 8-February-1989. */ /* Jack Dongarra, Argonne National Laboratory. */ /* Iain Duff, AERE Harwell. */ /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* Sven Hammarling, Numerical Algorithms Group Ltd. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Set NOTA and NOTB as true if A and B respectively are not */ /* transposed and set NROWA, NCOLA and NROWB as the number of rows */ /* and columns of A and the number of rows of B respectively. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ nota = lsame_(transa, "N"); notb = lsame_(transb, "N"); if (nota) { nrowa = *m; ncola = *k; } else { nrowa = *k; ncola = *m; } if (notb) { nrowb = *k; } else { nrowb = *n; } /* Test the input parameters. */ info = 0; if (! nota && ! lsame_(transa, "C") && ! lsame_( transa, "T")) { info = 1; } else if (! notb && ! lsame_(transb, "C") && ! lsame_(transb, "T")) { info = 2; } else if (*m < 0) { info = 3; } else if (*n < 0) { info = 4; } else if (*k < 0) { info = 5; } else if (*lda < max(1,nrowa)) { info = 8; } else if (*ldb < max(1,nrowb)) { info = 10; } else if (*ldc < max(1,*m)) { info = 13; } if (info != 0) { xerbla_("SGEMM ", &info); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) { return 0; } /* And if alpha.eq.zero. */ if (*alpha == 0.f) { if (*beta == 0.f) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.f; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L30: */ } /* L40: */ } } return 0; } /* Start the operations. */ if (notb) { if (nota) { /* Form C := alpha*A*B + beta*C. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.f) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.f; /* L50: */ } } else if (*beta != 1.f) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L60: */ } } i__2 = *k; for (l = 1; l <= i__2; ++l) { if (b[l + j * b_dim1] != 0.f) { temp = *alpha * b[l + j * b_dim1]; i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] += temp * a[i__ + l * a_dim1]; /* L70: */ } } /* L80: */ } /* L90: */ } } else { /* Form C := alpha*A'*B + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp = 0.f; i__3 = *k; for (l = 1; l <= i__3; ++l) { temp += a[l + i__ * a_dim1] * b[l + j * b_dim1]; /* L100: */ } if (*beta == 0.f) { c__[i__ + j * c_dim1] = *alpha * temp; } else { c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ i__ + j * c_dim1]; } /* L110: */ } /* L120: */ } } } else { if (nota) { /* Form C := alpha*A*B' + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.f) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.f; /* L130: */ } } else if (*beta != 1.f) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L140: */ } } i__2 = *k; for (l = 1; l <= i__2; ++l) { if (b[j + l * b_dim1] != 0.f) { temp = *alpha * b[j + l * b_dim1]; i__3 = *m; for (i__ = 1; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] += temp * a[i__ + l * a_dim1]; /* L150: */ } } /* L160: */ } /* L170: */ } } else { /* Form C := alpha*A'*B' + beta*C */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { temp = 0.f; i__3 = *k; for (l = 1; l <= i__3; ++l) { temp += a[l + i__ * a_dim1] * b[j + l * b_dim1]; /* L180: */ } if (*beta == 0.f) { c__[i__ + j * c_dim1] = *alpha * temp; } else { c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ i__ + j * c_dim1]; } /* L190: */ } /* L200: */ } } } return 0; /* End of SGEMM . */ } /* sgemm_ */