/* dpotri.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int dpotri_(char *uplo, integer *n, doublereal *a, integer * lda, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1; /* Local variables */ extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *), dlauum_( char *, integer *, doublereal *, integer *, integer *), dtrtri_(char *, char *, integer *, doublereal *, integer *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DPOTRI computes the inverse of a real symmetric positive definite */ /* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */ /* computed by DPOTRF. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the triangular factor U or L from the Cholesky */ /* factorization A = U**T*U or A = L*L**T, as computed by */ /* DPOTRF. */ /* On exit, the upper or lower triangle of the (symmetric) */ /* inverse of A, overwriting the input factor U or L. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the (i,i) element of the factor U or L is */ /* zero, and the inverse could not be computed. */ /* ===================================================================== */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("DPOTRI", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Invert the triangular Cholesky factor U or L. */ dtrtri_(uplo, "Non-unit", n, &a[a_offset], lda, info); if (*info > 0) { return 0; } /* Form inv(U)*inv(U)' or inv(L)'*inv(L). */ dlauum_(uplo, n, &a[a_offset], lda, info); return 0; /* End of DPOTRI */ } /* dpotri_ */