// The "Square Detector" program. // It loads several images sequentially and tries to find squares in // each image #include "opencv2/core.hpp" #include "opencv2/core/utility.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/ocl/ocl.hpp" #include #include #include using namespace cv; using namespace std; #define ACCURACY_CHECK 1 #if ACCURACY_CHECK // check if two vectors of vector of points are near or not // prior assumption is that they are in correct order static bool checkPoints( vector< vector > set1, vector< vector > set2, int maxDiff = 5) { if(set1.size() != set2.size()) { return false; } for(vector< vector >::iterator it1 = set1.begin(), it2 = set2.begin(); it1 < set1.end() && it2 < set2.end(); it1 ++, it2 ++) { vector pts1 = *it1; vector pts2 = *it2; if(pts1.size() != pts2.size()) { return false; } for(size_t i = 0; i < pts1.size(); i ++) { Point pt1 = pts1[i], pt2 = pts2[i]; if(std::abs(pt1.x - pt2.x) > maxDiff || std::abs(pt1.y - pt2.y) > maxDiff) { return false; } } } return true; } #endif int thresh = 50, N = 11; const char* wndname = "OpenCL Square Detection Demo"; // helper function: // finds a cosine of angle between vectors // from pt0->pt1 and from pt0->pt2 static double angle( Point pt1, Point pt2, Point pt0 ) { double dx1 = pt1.x - pt0.x; double dy1 = pt1.y - pt0.y; double dx2 = pt2.x - pt0.x; double dy2 = pt2.y - pt0.y; return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10); } // returns sequence of squares detected on the image. // the sequence is stored in the specified memory storage static void findSquares( const Mat& image, vector >& squares ) { squares.clear(); Mat pyr, timg, gray0(image.size(), CV_8U), gray; // down-scale and upscale the image to filter out the noise pyrDown(image, pyr, Size(image.cols/2, image.rows/2)); pyrUp(pyr, timg, image.size()); vector > contours; // find squares in every color plane of the image for( int c = 0; c < 3; c++ ) { int ch[] = {c, 0}; mixChannels(&timg, 1, &gray0, 1, ch, 1); // try several threshold levels for( int l = 0; l < N; l++ ) { // hack: use Canny instead of zero threshold level. // Canny helps to catch squares with gradient shading if( l == 0 ) { // apply Canny. Take the upper threshold from slider // and set the lower to 0 (which forces edges merging) Canny(gray0, gray, 0, thresh, 5); // dilate canny output to remove potential // holes between edge segments dilate(gray, gray, Mat(), Point(-1,-1)); } else { // apply threshold if l!=0: // tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0 cv::threshold(gray0, gray, (l+1)*255/N, 255, THRESH_BINARY); } // find contours and store them all as a list findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE); vector approx; // test each contour for( size_t i = 0; i < contours.size(); i++ ) { // approximate contour with accuracy proportional // to the contour perimeter approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true); // square contours should have 4 vertices after approximation // relatively large area (to filter out noisy contours) // and be convex. // Note: absolute value of an area is used because // area may be positive or negative - in accordance with the // contour orientation if( approx.size() == 4 && fabs(contourArea(Mat(approx))) > 1000 && isContourConvex(Mat(approx)) ) { double maxCosine = 0; for( int j = 2; j < 5; j++ ) { // find the maximum cosine of the angle between joint edges double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1])); maxCosine = MAX(maxCosine, cosine); } // if cosines of all angles are small // (all angles are ~90 degree) then write quandrange // vertices to resultant sequence if( maxCosine < 0.3 ) squares.push_back(approx); } } } } } // returns sequence of squares detected on the image. // the sequence is stored in the specified memory storage static void findSquares_ocl( const Mat& image, vector >& squares ) { squares.clear(); Mat gray; cv::ocl::oclMat pyr_ocl, timg_ocl, gray0_ocl, gray_ocl; // down-scale and upscale the image to filter out the noise ocl::pyrDown(ocl::oclMat(image), pyr_ocl); ocl::pyrUp(pyr_ocl, timg_ocl); vector > contours; vector gray0s; ocl::split(timg_ocl, gray0s); // split 3 channels into a vector of oclMat // find squares in every color plane of the image for( int c = 0; c < 3; c++ ) { gray0_ocl = gray0s[c]; // try several threshold levels for( int l = 0; l < N; l++ ) { // hack: use Canny instead of zero threshold level. // Canny helps to catch squares with gradient shading if( l == 0 ) { // do canny on OpenCL device // apply Canny. Take the upper threshold from slider // and set the lower to 0 (which forces edges merging) cv::ocl::Canny(gray0_ocl, gray_ocl, 0, thresh, 5); // dilate canny output to remove potential // holes between edge segments ocl::dilate(gray_ocl, gray_ocl, Mat(), Point(-1,-1)); gray = Mat(gray_ocl); } else { // apply threshold if l!=0: // tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0 cv::ocl::threshold(gray0_ocl, gray_ocl, (l+1)*255/N, 255, THRESH_BINARY); gray = gray_ocl; } // find contours and store them all as a list findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE); vector approx; // test each contour for( size_t i = 0; i < contours.size(); i++ ) { // approximate contour with accuracy proportional // to the contour perimeter approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true); // square contours should have 4 vertices after approximation // relatively large area (to filter out noisy contours) // and be convex. // Note: absolute value of an area is used because // area may be positive or negative - in accordance with the // contour orientation if( approx.size() == 4 && fabs(contourArea(Mat(approx))) > 1000 && isContourConvex(Mat(approx)) ) { double maxCosine = 0; for( int j = 2; j < 5; j++ ) { // find the maximum cosine of the angle between joint edges double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1])); maxCosine = MAX(maxCosine, cosine); } // if cosines of all angles are small // (all angles are ~90 degree) then write quandrange // vertices to resultant sequence if( maxCosine < 0.3 ) squares.push_back(approx); } } } } } // the function draws all the squares in the image static void drawSquares( Mat& image, const vector >& squares ) { for( size_t i = 0; i < squares.size(); i++ ) { const Point* p = &squares[i][0]; int n = (int)squares[i].size(); polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, LINE_AA); } } // draw both pure-C++ and ocl square results onto a single image static Mat drawSquaresBoth( const Mat& image, const vector >& sqsCPP, const vector >& sqsOCL ) { Mat imgToShow(Size(image.cols * 2, image.rows), image.type()); Mat lImg = imgToShow(Rect(Point(0, 0), image.size())); Mat rImg = imgToShow(Rect(Point(image.cols, 0), image.size())); image.copyTo(lImg); image.copyTo(rImg); drawSquares(lImg, sqsCPP); drawSquares(rImg, sqsOCL); float fontScale = 0.8f; Scalar white = Scalar::all(255), black = Scalar::all(0); putText(lImg, "C++", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, black, 2); putText(rImg, "OCL", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, black, 2); putText(lImg, "C++", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, white, 1); putText(rImg, "OCL", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, white, 1); return imgToShow; } int main(int argc, char** argv) { const char* keys = "{ i | input | | specify input image }" "{ o | output | squares_output.jpg | specify output save path}"; CommandLineParser cmd(argc, argv, keys); string inputName = cmd.get("i"); string outfile = cmd.get("o"); if(inputName.empty()) { cout << "Avaible options:" << endl; cmd.printMessage(); return 0; } vector info; CV_Assert(ocl::getDevice(info)); int iterations = 10; namedWindow( wndname, 1 ); vector > squares_cpu, squares_ocl; Mat image = imread(inputName, 1); if( image.empty() ) { cout << "Couldn't load " << inputName << endl; return -1; } int j = iterations; int64 t_ocl = 0, t_cpp = 0; //warm-ups cout << "warming up ..." << endl; findSquares(image, squares_cpu); findSquares_ocl(image, squares_ocl); #if ACCURACY_CHECK cout << "Checking ocl accuracy ... " << endl; cout << (checkPoints(squares_cpu, squares_ocl) ? "Pass" : "Failed") << endl; #endif do { int64 t_start = cv::getTickCount(); findSquares(image, squares_cpu); t_cpp += cv::getTickCount() - t_start; t_start = cv::getTickCount(); findSquares_ocl(image, squares_ocl); t_ocl += cv::getTickCount() - t_start; cout << "run loop: " << j << endl; } while(--j); cout << "cpp average time: " << 1000.0f * (double)t_cpp / getTickFrequency() / iterations << "ms" << endl; cout << "ocl average time: " << 1000.0f * (double)t_ocl / getTickFrequency() / iterations << "ms" << endl; Mat result = drawSquaresBoth(image, squares_cpu, squares_ocl); imshow(wndname, result); imwrite(outfile, result); waitKey(0); return 0; }