#include #include #include #include using namespace cv; using namespace cv::dnn; #include #include #include using namespace std; const size_t width = 300; const size_t height = 300; static Mat getMean(const size_t& imageHeight, const size_t& imageWidth) { Mat mean; const int meanValues[3] = {104, 117, 123}; vector meanChannels; for(int i = 0; i < 3; i++) { Mat channel((int)imageHeight, (int)imageWidth, CV_32F, Scalar(meanValues[i])); meanChannels.push_back(channel); } cv::merge(meanChannels, mean); return mean; } static Mat preprocess(const Mat& frame) { Mat preprocessed; frame.convertTo(preprocessed, CV_32F); resize(preprocessed, preprocessed, Size(width, height)); //SSD accepts 300x300 RGB-images Mat mean = getMean(width, height); cv::subtract(preprocessed, mean, preprocessed); return preprocessed; } const char* classNames[] = {"background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; const char* about = "This sample uses Single-Shot Detector " "(https://arxiv.org/abs/1512.02325) " "to detect objects on camera/video/image.\n" ".caffemodel model's file is available here: " "https://github.com/weiliu89/caffe/tree/ssd#models\n" "Default network is 300x300 and 20-classes VOC.\n"; const char* params = "{ help | false | print usage }" "{ proto | | model configuration }" "{ model | | model weights }" "{ camera_device | 0 | camera device number}" "{ video | | video or image for detection}" "{ min_confidence | 0.5 | min confidence }"; int main(int argc, char** argv) { cv::CommandLineParser parser(argc, argv, params); if (parser.get("help")) { cout << about << endl; parser.printMessage(); return 0; } String modelConfiguration = parser.get("proto"); String modelBinary = parser.get("model"); //! [Initialize network] dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); //! [Initialize network] if (net.empty()) { cerr << "Can't load network by using the following files: " << endl; cerr << "prototxt: " << modelConfiguration << endl; cerr << "caffemodel: " << modelBinary << endl; cerr << "Models can be downloaded here:" << endl; cerr << "https://github.com/weiliu89/caffe/tree/ssd#models" << endl; exit(-1); } VideoCapture cap; if (parser.get("video").empty()) { int cameraDevice = parser.get("camera_device"); cap = VideoCapture(cameraDevice); if(!cap.isOpened()) { cout << "Couldn't find camera: " << cameraDevice << endl; return -1; } } else { cap.open(parser.get("video")); if(!cap.isOpened()) { cout << "Couldn't open image or video: " << parser.get("video") << endl; return -1; } } for (;;) { cv::Mat frame; cap >> frame; // get a new frame from camera/video or read image if (frame.empty()) { waitKey(); break; } if (frame.channels() == 4) cvtColor(frame, frame, COLOR_BGRA2BGR); //! [Prepare blob] Mat preprocessedFrame = preprocess(frame); Mat inputBlob = blobFromImage(preprocessedFrame, 1.0f, Size(), Scalar(), false); //Convert Mat to batch of images //! [Prepare blob] //! [Set input blob] net.setInput(inputBlob, "data"); //set the network input //! [Set input blob] //! [Make forward pass] Mat detection = net.forward("detection_out"); //compute output //! [Make forward pass] vector layersTimings; double freq = getTickFrequency() / 1000; double time = net.getPerfProfile(layersTimings) / freq; ostringstream ss; ss << "FPS: " << 1000/time << " ; time: " << time << " ms"; putText(frame, ss.str(), Point(20,20), 0, 0.5, Scalar(0,0,255)); Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr()); float confidenceThreshold = parser.get("min_confidence"); for(int i = 0; i < detectionMat.rows; i++) { float confidence = detectionMat.at(i, 2); if(confidence > confidenceThreshold) { size_t objectClass = (size_t)(detectionMat.at(i, 1)); int xLeftBottom = static_cast(detectionMat.at(i, 3) * frame.cols); int yLeftBottom = static_cast(detectionMat.at(i, 4) * frame.rows); int xRightTop = static_cast(detectionMat.at(i, 5) * frame.cols); int yRightTop = static_cast(detectionMat.at(i, 6) * frame.rows); ss.str(""); ss << confidence; String conf(ss.str()); Rect object(xLeftBottom, yLeftBottom, xRightTop - xLeftBottom, yRightTop - yLeftBottom); rectangle(frame, object, Scalar(0, 255, 0)); String label = String(classNames[objectClass]) + ": " + conf; int baseLine = 0; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), Size(labelSize.width, labelSize.height + baseLine)), Scalar(255, 255, 255), CV_FILLED); putText(frame, label, Point(xLeftBottom, yLeftBottom), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); } } imshow("detections", frame); if (waitKey(1) >= 0) break; } return 0; } // main