#!/usr/bin/env python ''' Texture flow direction estimation. Sample shows how cv2.cornerEigenValsAndVecs function can be used to estimate image texture flow direction. ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 import sys from tests_common import NewOpenCVTests class texture_flow_test(NewOpenCVTests): def test_texture_flow(self): img = self.get_sample('samples/data/chessboard.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) h, w = img.shape[:2] eigen = cv2.cornerEigenValsAndVecs(gray, 5, 3) eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2] flow = eigen[:,:,2] d = 300 eps = d / 30 points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2) textureVectors = [] for x, y in np.int32(points): textureVectors.append(np.int32(flow[y, x]*d)) for i in range(len(textureVectors)): self.assertTrue(cv2.norm(textureVectors[i], cv2.NORM_L2) < eps or abs(cv2.norm(textureVectors[i], cv2.NORM_L2) - d) < eps) if __name__ == '__main__': NewOpenCVTests.bootstrap()