#include #include #include #include using namespace cv; using namespace std; void help() { cout << "\nThis program demonstrated the use of the discrete Fourier transform (dft)\n" "The dft of an image is taken and it's power spectrum is displayed.\n" "Call:\n" "./dft [image_name -- default lena.jpg]\n" << endl; } int main(int argc, char ** argv) { const char* filename = argc >=2 ? argv[1] : "lena.jpg"; Mat img = imread(filename, CV_LOAD_IMAGE_GRAYSCALE); if( img.empty() ) { help(); return -1; } help(); int M = getOptimalDFTSize( img.rows ); int N = getOptimalDFTSize( img.cols ); Mat padded; copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0)); Mat planes[] = {Mat_(padded), Mat::zeros(padded.size(), CV_32F)}; Mat complexImg; merge(planes, 2, complexImg); dft(complexImg, complexImg); // compute log(1 + sqrt(Re(DFT(img))**2 + Im(DFT(img))**2)) split(complexImg, planes); magnitude(planes[0], planes[1], planes[0]); Mat mag = planes[0]; mag += Scalar::all(1); log(mag, mag); // crop the spectrum, if it has an odd number of rows or columns mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2)); int cx = mag.cols/2; int cy = mag.rows/2; // rearrange the quadrants of Fourier image // so that the origin is at the image center Mat tmp; Mat q0(mag, Rect(0, 0, cx, cy)); Mat q1(mag, Rect(cx, 0, cx, cy)); Mat q2(mag, Rect(0, cy, cx, cy)); Mat q3(mag, Rect(cx, cy, cx, cy)); q0.copyTo(tmp); q3.copyTo(q0); tmp.copyTo(q3); q1.copyTo(tmp); q2.copyTo(q1); tmp.copyTo(q2); normalize(mag, mag, 0, 1, CV_MINMAX); imshow("spectrum magnitude", mag); waitKey(); return 0; }