// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "convert.hpp" /****************************************************************************************\ * Generalized split/merge: mixing channels * \****************************************************************************************/ namespace cv { template static void mixChannels_( const T** src, const int* sdelta, T** dst, const int* ddelta, int len, int npairs ) { int i, k; for( k = 0; k < npairs; k++ ) { const T* s = src[k]; T* d = dst[k]; int ds = sdelta[k], dd = ddelta[k]; if( s ) { for( i = 0; i <= len - 2; i += 2, s += ds*2, d += dd*2 ) { T t0 = s[0], t1 = s[ds]; d[0] = t0; d[dd] = t1; } if( i < len ) d[0] = s[0]; } else { for( i = 0; i <= len - 2; i += 2, d += dd*2 ) d[0] = d[dd] = 0; if( i < len ) d[0] = 0; } } } static void mixChannels8u( const uchar** src, const int* sdelta, uchar** dst, const int* ddelta, int len, int npairs ) { mixChannels_(src, sdelta, dst, ddelta, len, npairs); } static void mixChannels16u( const ushort** src, const int* sdelta, ushort** dst, const int* ddelta, int len, int npairs ) { mixChannels_(src, sdelta, dst, ddelta, len, npairs); } static void mixChannels32s( const int** src, const int* sdelta, int** dst, const int* ddelta, int len, int npairs ) { mixChannels_(src, sdelta, dst, ddelta, len, npairs); } static void mixChannels64s( const int64** src, const int* sdelta, int64** dst, const int* ddelta, int len, int npairs ) { mixChannels_(src, sdelta, dst, ddelta, len, npairs); } typedef void (*MixChannelsFunc)( const uchar** src, const int* sdelta, uchar** dst, const int* ddelta, int len, int npairs ); static MixChannelsFunc getMixchFunc(int depth) { static MixChannelsFunc mixchTab[] = { (MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels16u, (MixChannelsFunc)mixChannels16u, (MixChannelsFunc)mixChannels32s, (MixChannelsFunc)mixChannels32s, (MixChannelsFunc)mixChannels64s, 0 }; return mixchTab[depth]; } } // cv:: void cv::mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs ) { CV_INSTRUMENT_REGION() if( npairs == 0 ) return; CV_Assert( src && nsrcs > 0 && dst && ndsts > 0 && fromTo && npairs > 0 ); size_t i, j, k, esz1 = dst[0].elemSize1(); int depth = dst[0].depth(); AutoBuffer buf((nsrcs + ndsts + 1)*(sizeof(Mat*) + sizeof(uchar*)) + npairs*(sizeof(uchar*)*2 + sizeof(int)*6)); const Mat** arrays = (const Mat**)(uchar*)buf; uchar** ptrs = (uchar**)(arrays + nsrcs + ndsts); const uchar** srcs = (const uchar**)(ptrs + nsrcs + ndsts + 1); uchar** dsts = (uchar**)(srcs + npairs); int* tab = (int*)(dsts + npairs); int *sdelta = (int*)(tab + npairs*4), *ddelta = sdelta + npairs; for( i = 0; i < nsrcs; i++ ) arrays[i] = &src[i]; for( i = 0; i < ndsts; i++ ) arrays[i + nsrcs] = &dst[i]; ptrs[nsrcs + ndsts] = 0; for( i = 0; i < npairs; i++ ) { int i0 = fromTo[i*2], i1 = fromTo[i*2+1]; if( i0 >= 0 ) { for( j = 0; j < nsrcs; i0 -= src[j].channels(), j++ ) if( i0 < src[j].channels() ) break; CV_Assert(j < nsrcs && src[j].depth() == depth); tab[i*4] = (int)j; tab[i*4+1] = (int)(i0*esz1); sdelta[i] = src[j].channels(); } else { tab[i*4] = (int)(nsrcs + ndsts); tab[i*4+1] = 0; sdelta[i] = 0; } for( j = 0; j < ndsts; i1 -= dst[j].channels(), j++ ) if( i1 < dst[j].channels() ) break; CV_Assert(i1 >= 0 && j < ndsts && dst[j].depth() == depth); tab[i*4+2] = (int)(j + nsrcs); tab[i*4+3] = (int)(i1*esz1); ddelta[i] = dst[j].channels(); } NAryMatIterator it(arrays, ptrs, (int)(nsrcs + ndsts)); int total = (int)it.size, blocksize = std::min(total, (int)((BLOCK_SIZE + esz1-1)/esz1)); MixChannelsFunc func = getMixchFunc(depth); for( i = 0; i < it.nplanes; i++, ++it ) { for( k = 0; k < npairs; k++ ) { srcs[k] = ptrs[tab[k*4]] + tab[k*4+1]; dsts[k] = ptrs[tab[k*4+2]] + tab[k*4+3]; } for( int t = 0; t < total; t += blocksize ) { int bsz = std::min(total - t, blocksize); func( srcs, sdelta, dsts, ddelta, bsz, (int)npairs ); if( t + blocksize < total ) for( k = 0; k < npairs; k++ ) { srcs[k] += blocksize*sdelta[k]*esz1; dsts[k] += blocksize*ddelta[k]*esz1; } } } } #ifdef HAVE_OPENCL namespace cv { static void getUMatIndex(const std::vector & um, int cn, int & idx, int & cnidx) { int totalChannels = 0; for (size_t i = 0, size = um.size(); i < size; ++i) { int ccn = um[i].channels(); totalChannels += ccn; if (totalChannels == cn) { idx = (int)(i + 1); cnidx = 0; return; } else if (totalChannels > cn) { idx = (int)i; cnidx = i == 0 ? cn : (cn - totalChannels + ccn); return; } } idx = cnidx = -1; } static bool ocl_mixChannels(InputArrayOfArrays _src, InputOutputArrayOfArrays _dst, const int* fromTo, size_t npairs) { std::vector src, dst; _src.getUMatVector(src); _dst.getUMatVector(dst); size_t nsrc = src.size(), ndst = dst.size(); CV_Assert(nsrc > 0 && ndst > 0); Size size = src[0].size(); int depth = src[0].depth(), esz = CV_ELEM_SIZE(depth), rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; for (size_t i = 1, ssize = src.size(); i < ssize; ++i) CV_Assert(src[i].size() == size && src[i].depth() == depth); for (size_t i = 0, dsize = dst.size(); i < dsize; ++i) CV_Assert(dst[i].size() == size && dst[i].depth() == depth); String declsrc, decldst, declproc, declcn, indexdecl; std::vector srcargs(npairs), dstargs(npairs); for (size_t i = 0; i < npairs; ++i) { int scn = fromTo[i<<1], dcn = fromTo[(i<<1) + 1]; int src_idx, src_cnidx, dst_idx, dst_cnidx; getUMatIndex(src, scn, src_idx, src_cnidx); getUMatIndex(dst, dcn, dst_idx, dst_cnidx); CV_Assert(dst_idx >= 0 && src_idx >= 0); srcargs[i] = src[src_idx]; srcargs[i].offset += src_cnidx * esz; dstargs[i] = dst[dst_idx]; dstargs[i].offset += dst_cnidx * esz; declsrc += format("DECLARE_INPUT_MAT(%d)", i); decldst += format("DECLARE_OUTPUT_MAT(%d)", i); indexdecl += format("DECLARE_INDEX(%d)", i); declproc += format("PROCESS_ELEM(%d)", i); declcn += format(" -D scn%d=%d -D dcn%d=%d", i, src[src_idx].channels(), i, dst[dst_idx].channels()); } ocl::Kernel k("mixChannels", ocl::core::mixchannels_oclsrc, format("-D T=%s -D DECLARE_INPUT_MAT_N=%s -D DECLARE_OUTPUT_MAT_N=%s" " -D PROCESS_ELEM_N=%s -D DECLARE_INDEX_N=%s%s", ocl::memopTypeToStr(depth), declsrc.c_str(), decldst.c_str(), declproc.c_str(), indexdecl.c_str(), declcn.c_str())); if (k.empty()) return false; int argindex = 0; for (size_t i = 0; i < npairs; ++i) argindex = k.set(argindex, ocl::KernelArg::ReadOnlyNoSize(srcargs[i])); for (size_t i = 0; i < npairs; ++i) argindex = k.set(argindex, ocl::KernelArg::WriteOnlyNoSize(dstargs[i])); argindex = k.set(argindex, size.height); argindex = k.set(argindex, size.width); k.set(argindex, rowsPerWI); size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } } #endif void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, const int* fromTo, size_t npairs) { CV_INSTRUMENT_REGION() if (npairs == 0 || fromTo == NULL) return; CV_OCL_RUN(dst.isUMatVector(), ocl_mixChannels(src, dst, fromTo, npairs)) bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_ARRAY_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR && src.kind() != _InputArray::STD_VECTOR_UMAT; bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT && dst.kind() != _InputArray::STD_ARRAY_MAT && dst.kind() != _InputArray::STD_VECTOR_VECTOR && dst.kind() != _InputArray::STD_VECTOR_UMAT; int i; int nsrc = src_is_mat ? 1 : (int)src.total(); int ndst = dst_is_mat ? 1 : (int)dst.total(); CV_Assert(nsrc > 0 && ndst > 0); cv::AutoBuffer _buf(nsrc + ndst); Mat* buf = _buf; for( i = 0; i < nsrc; i++ ) buf[i] = src.getMat(src_is_mat ? -1 : i); for( i = 0; i < ndst; i++ ) buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i); mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, fromTo, npairs); } void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, const std::vector& fromTo) { CV_INSTRUMENT_REGION() if (fromTo.empty()) return; CV_OCL_RUN(dst.isUMatVector(), ocl_mixChannels(src, dst, &fromTo[0], fromTo.size()>>1)) bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_ARRAY_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR && src.kind() != _InputArray::STD_VECTOR_UMAT; bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT && dst.kind() != _InputArray::STD_ARRAY_MAT && dst.kind() != _InputArray::STD_VECTOR_VECTOR && dst.kind() != _InputArray::STD_VECTOR_UMAT; int i; int nsrc = src_is_mat ? 1 : (int)src.total(); int ndst = dst_is_mat ? 1 : (int)dst.total(); CV_Assert(fromTo.size()%2 == 0 && nsrc > 0 && ndst > 0); cv::AutoBuffer _buf(nsrc + ndst); Mat* buf = _buf; for( i = 0; i < nsrc; i++ ) buf[i] = src.getMat(src_is_mat ? -1 : i); for( i = 0; i < ndst; i++ ) buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i); mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, &fromTo[0], fromTo.size()/2); } #ifdef HAVE_IPP namespace cv { static bool ipp_extractChannel(const Mat &src, Mat &dst, int channel) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP() int srcChannels = src.channels(); int dstChannels = dst.channels(); if(src.dims != dst.dims) return false; if(src.dims <= 2) { IppiSize size = ippiSize(src.size()); return CV_INSTRUMENT_FUN_IPP(llwiCopyChannel, src.ptr(), (int)src.step, srcChannels, channel, dst.ptr(), (int)dst.step, dstChannels, 0, size, (int)src.elemSize1()) >= 0; } else { const Mat *arrays[] = {&dst, NULL}; uchar *ptrs[2] = {NULL}; NAryMatIterator it(arrays, ptrs); IppiSize size = {(int)it.size, 1}; for( size_t i = 0; i < it.nplanes; i++, ++it ) { if(CV_INSTRUMENT_FUN_IPP(llwiCopyChannel, ptrs[0], 0, srcChannels, channel, ptrs[1], 0, dstChannels, 0, size, (int)src.elemSize1()) < 0) return false; } return true; } #else CV_UNUSED(src); CV_UNUSED(dst); CV_UNUSED(channel); return false; #endif } static bool ipp_insertChannel(const Mat &src, Mat &dst, int channel) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP() int srcChannels = src.channels(); int dstChannels = dst.channels(); if(src.dims != dst.dims) return false; if(src.dims <= 2) { IppiSize size = ippiSize(src.size()); return CV_INSTRUMENT_FUN_IPP(llwiCopyChannel, src.ptr(), (int)src.step, srcChannels, 0, dst.ptr(), (int)dst.step, dstChannels, channel, size, (int)src.elemSize1()) >= 0; } else { const Mat *arrays[] = {&dst, NULL}; uchar *ptrs[2] = {NULL}; NAryMatIterator it(arrays, ptrs); IppiSize size = {(int)it.size, 1}; for( size_t i = 0; i < it.nplanes; i++, ++it ) { if(CV_INSTRUMENT_FUN_IPP(llwiCopyChannel, ptrs[0], 0, srcChannels, 0, ptrs[1], 0, dstChannels, channel, size, (int)src.elemSize1()) < 0) return false; } return true; } #else CV_UNUSED(src); CV_UNUSED(dst); CV_UNUSED(channel); return false; #endif } } #endif void cv::extractChannel(InputArray _src, OutputArray _dst, int coi) { CV_INSTRUMENT_REGION() int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); CV_Assert( 0 <= coi && coi < cn ); int ch[] = { coi, 0 }; #ifdef HAVE_OPENCL if (ocl::isOpenCLActivated() && _src.dims() <= 2 && _dst.isUMat()) { UMat src = _src.getUMat(); _dst.create(src.dims, &src.size[0], depth); UMat dst = _dst.getUMat(); mixChannels(std::vector(1, src), std::vector(1, dst), ch, 1); return; } #endif Mat src = _src.getMat(); _dst.create(src.dims, &src.size[0], depth); Mat dst = _dst.getMat(); CV_IPP_RUN_FAST(ipp_extractChannel(src, dst, coi)) mixChannels(&src, 1, &dst, 1, ch, 1); } void cv::insertChannel(InputArray _src, InputOutputArray _dst, int coi) { CV_INSTRUMENT_REGION() int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype); CV_Assert( _src.sameSize(_dst) && sdepth == ddepth ); CV_Assert( 0 <= coi && coi < dcn && scn == 1 ); int ch[] = { 0, coi }; #ifdef HAVE_OPENCL if (ocl::isOpenCLActivated() && _src.dims() <= 2 && _dst.isUMat()) { UMat src = _src.getUMat(), dst = _dst.getUMat(); mixChannels(std::vector(1, src), std::vector(1, dst), ch, 1); return; } #endif Mat src = _src.getMat(), dst = _dst.getMat(); CV_IPP_RUN_FAST(ipp_insertChannel(src, dst, coi)) mixChannels(&src, 1, &dst, 1, ch, 1); }