import cv2 as cv import argparse import numpy as np import sys backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV) targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD) parser = argparse.ArgumentParser(description='Use this script to run semantic segmentation deep learning networks using OpenCV.') parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') parser.add_argument('--model', required=True, help='Path to a binary file of model contains trained weights. ' 'It could be a file with extensions .caffemodel (Caffe), ' '.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)') parser.add_argument('--config', help='Path to a text file of model contains network configuration. ' 'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)') parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'], help='Optional name of an origin framework of the model. ' 'Detect it automatically if it does not set.') parser.add_argument('--classes', help='Optional path to a text file with names of classes.') parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. ' 'An every color is represented with three values from 0 to 255 in BGR channels order.') parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0], help='Preprocess input image by subtracting mean values. ' 'Mean values should be in BGR order.') parser.add_argument('--scale', type=float, default=1.0, help='Preprocess input image by multiplying on a scale factor.') parser.add_argument('--width', type=int, required=True, help='Preprocess input image by resizing to a specific width.') parser.add_argument('--height', type=int, required=True, help='Preprocess input image by resizing to a specific height.') parser.add_argument('--rgb', action='store_true', help='Indicate that model works with RGB input images instead BGR ones.') parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, help="Choose one of computation backends: " "%d: automatically (by default), " "%d: Halide language (http://halide-lang.org/), " "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "%d: OpenCV implementation" % backends) parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, help='Choose one of target computation devices: ' '%d: CPU target (by default), ' '%d: OpenCL, ' '%d: OpenCL fp16 (half-float precision), ' '%d: VPU' % targets) args = parser.parse_args() np.random.seed(324) # Load names of classes classes = None if args.classes: with open(args.classes, 'rt') as f: classes = f.read().rstrip('\n').split('\n') # Load colors colors = None if args.colors: with open(args.colors, 'rt') as f: colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')] legend = None def showLegend(classes): global legend if not classes is None and legend is None: blockHeight = 30 assert(len(classes) == len(colors)) legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8) for i in range(len(classes)): block = legend[i * blockHeight:(i + 1) * blockHeight] block[:,:] = colors[i] cv.putText(block, classes[i], (0, blockHeight/2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) cv.namedWindow('Legend', cv.WINDOW_NORMAL) cv.imshow('Legend', legend) classes = None # Load a network net = cv.dnn.readNet(args.model, args.config, args.framework) net.setPreferableBackend(args.backend) net.setPreferableTarget(args.target) winName = 'Deep learning image classification in OpenCV' cv.namedWindow(winName, cv.WINDOW_NORMAL) cap = cv.VideoCapture(args.input if args.input else 0) legend = None while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break # Create a 4D blob from a frame. blob = cv.dnn.blobFromImage(frame, args.scale, (args.width, args.height), args.mean, args.rgb, crop=False) # Run a model net.setInput(blob) score = net.forward() numClasses = score.shape[1] height = score.shape[2] width = score.shape[3] # Draw segmentation if not colors: # Generate colors colors = [np.array([0, 0, 0], np.uint8)] for i in range(1, numClasses): colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2) classIds = np.argmax(score[0], axis=0) segm = np.stack([colors[idx] for idx in classIds.flatten()]) segm = segm.reshape(height, width, 3) segm = cv.resize(segm, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_NEAREST) frame = (0.1 * frame + 0.9 * segm).astype(np.uint8) # Put efficiency information. t, _ = net.getPerfProfile() label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) showLegend(classes) cv.imshow(winName, frame)