/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace std; enum { MINEIGENVAL=0, HARRIS=1, EIGENVALSVECS=2 }; #if 0 //set 1 to switch ON debug message #define TEST_MESSAGE( message ) std::cout << message; #define TEST_MESSAGEL( message, val) std::cout << message << val << std::endl; #else #define TEST_MESSAGE( message ) #define TEST_MESSAGEL( message, val) #endif /////////////////////ref////////////////////// struct greaterThanPtr : public std::binary_function { bool operator () (const float * a, const float * b) const { return *a > *b; } }; static void test_cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size, int _aperture_size, double k, int mode, int borderType, const Scalar& _borderValue ) { int i, j; Scalar borderValue = _borderValue; int aperture_size = _aperture_size < 0 ? 3 : _aperture_size; Point anchor( aperture_size/2, aperture_size/2 ); CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 ); CV_Assert( eigenv.type() == CV_32FC1 ); CV_Assert( ( src.rows == eigenv.rows ) && (((mode == MINEIGENVAL)||(mode == HARRIS)) && (src.cols == eigenv.cols)) ); int type = src.type(); int ftype = CV_32FC1; double kernel_scale = 1; Mat dx2, dy2, dxdy(src.size(), CV_32F), kernel; kernel = cvtest::calcSobelKernel2D( 1, 0, _aperture_size ); cvtest::filter2D( src, dx2, ftype, kernel*kernel_scale, anchor, 0, borderType, borderValue ); kernel = cvtest::calcSobelKernel2D( 0, 1, _aperture_size ); cvtest::filter2D( src, dy2, ftype, kernel*kernel_scale, anchor, 0, borderType,borderValue ); double denom = (1 << (aperture_size-1))*block_size; denom = denom * denom; if( _aperture_size < 0 ) denom *= 4; if(type != ftype ) denom *= 255.; denom = 1./denom; for( i = 0; i < src.rows; i++ ) { float* dxdyp = dxdy.ptr(i); float* dx2p = dx2.ptr(i); float* dy2p = dy2.ptr(i); for( j = 0; j < src.cols; j++ ) { double xval = dx2p[j], yval = dy2p[j]; dxdyp[j] = (float)(xval*yval*denom); dx2p[j] = (float)(xval*xval*denom); dy2p[j] = (float)(yval*yval*denom); } } kernel = Mat::ones(block_size, block_size, CV_32F); anchor = Point(block_size/2, block_size/2); cvtest::filter2D( dx2, dx2, ftype, kernel, anchor, 0, borderType, borderValue ); cvtest::filter2D( dy2, dy2, ftype, kernel, anchor, 0, borderType, borderValue ); cvtest::filter2D( dxdy, dxdy, ftype, kernel, anchor, 0, borderType, borderValue ); if( mode == MINEIGENVAL ) { for( i = 0; i < src.rows; i++ ) { float* eigenvp = eigenv.ptr(i); const float* dxdyp = dxdy.ptr(i); const float* dx2p = dx2.ptr(i); const float* dy2p = dy2.ptr(i); for( j = 0; j < src.cols; j++ ) { double a = dx2p[j], b = dxdyp[j], c = dy2p[j]; double d = sqrt( ( a - c )*( a - c ) + 4*b*b ); eigenvp[j] = (float)( 0.5*(a + c - d)); } } } else if( mode == HARRIS ) { for( i = 0; i < src.rows; i++ ) { float* eigenvp = eigenv.ptr(i); const float* dxdyp = dxdy.ptr(i); const float* dx2p = dx2.ptr(i); const float* dy2p = dy2.ptr(i); for( j = 0; j < src.cols; j++ ) { double a = dx2p[j], b = dxdyp[j], c = dy2p[j]; eigenvp[j] = (float)(a*c - b*b - k*(a + c)*(a + c)); } } } } static void test_goodFeaturesToTrack( InputArray _image, OutputArray _corners, int maxCorners, double qualityLevel, double minDistance, InputArray _mask, int blockSize, int gradientSize, bool useHarrisDetector, double harrisK ) { CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 ); CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) ); Mat image = _image.getMat(), mask = _mask.getMat(); int aperture_size = gradientSize; int borderType = BORDER_DEFAULT; Mat eig, tmp, tt; eig.create( image.size(), CV_32F ); if( useHarrisDetector ) test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, harrisK, HARRIS, borderType, 0 ); else test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, 0, MINEIGENVAL, borderType, 0 ); double maxVal = 0; cvtest::minMaxIdx( eig, 0, &maxVal, 0, 0, mask ); cvtest::threshold( eig, eig, (float)(maxVal*qualityLevel), 0.f,THRESH_TOZERO ); cvtest::dilate( eig, tmp, Mat(),Point(-1,-1),borderType,0); Size imgsize = image.size(); vector tmpCorners; // collect list of pointers to features - put them into temporary image for( int y = 1; y < imgsize.height - 1; y++ ) { const float* eig_data = (const float*)eig.ptr(y); const float* tmp_data = (const float*)tmp.ptr(y); const uchar* mask_data = mask.data ? mask.ptr(y) : 0; for( int x = 1; x < imgsize.width - 1; x++ ) { float val = eig_data[x]; if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) ) { tmpCorners.push_back(eig_data + x); } } } vector corners; size_t i, j, total = tmpCorners.size(), ncorners = 0; std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() ); if(minDistance >= 1) { // Partition the image into larger grids int w = image.cols; int h = image.rows; const int cell_size = cvRound(minDistance); const int grid_width = (w + cell_size - 1) / cell_size; const int grid_height = (h + cell_size - 1) / cell_size; std::vector > grid(grid_width*grid_height); minDistance *= minDistance; for( i = 0; i < total; i++ ) { int ofs = (int)((const uchar*)tmpCorners[i] - eig.data); int y = (int)(ofs / eig.step); int x = (int)((ofs - y*eig.step)/sizeof(float)); bool good = true; int x_cell = x / cell_size; int y_cell = y / cell_size; int x1 = x_cell - 1; int y1 = y_cell - 1; int x2 = x_cell + 1; int y2 = y_cell + 1; // boundary check x1 = std::max(0, x1); y1 = std::max(0, y1); x2 = std::min(grid_width-1, x2); y2 = std::min(grid_height-1, y2); for( int yy = y1; yy <= y2; yy++ ) { for( int xx = x1; xx <= x2; xx++ ) { vector &m = grid[yy*grid_width + xx]; if( m.size() ) { for(j = 0; j < m.size(); j++) { float dx = x - m[j].x; float dy = y - m[j].y; if( dx*dx + dy*dy < minDistance ) { good = false; goto break_out; } } } } } break_out: if(good) { grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y)); corners.push_back(Point2f((float)x, (float)y)); ++ncorners; if( maxCorners > 0 && (int)ncorners == maxCorners ) break; } } } else { for( i = 0; i < total; i++ ) { int ofs = (int)((const uchar*)tmpCorners[i] - eig.data); int y = (int)(ofs / eig.step); int x = (int)((ofs - y*eig.step)/sizeof(float)); corners.push_back(Point2f((float)x, (float)y)); ++ncorners; if( maxCorners > 0 && (int)ncorners == maxCorners ) break; } } Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F); } /////////////////end of ref code////////////////////////// class CV_GoodFeatureToTTest : public cvtest::ArrayTest { public: CV_GoodFeatureToTTest(); protected: int prepare_test_case( int test_case_idx ); void run_func(); int validate_test_results( int test_case_idx ); Mat src, src_gray; Mat src_gray32f, src_gray8U; Mat mask; int maxCorners; vector corners; vector Refcorners; double qualityLevel; double minDistance; int blockSize; int gradientSize; bool useHarrisDetector; double k; int SrcType; }; CV_GoodFeatureToTTest::CV_GoodFeatureToTTest() { RNG& rng = ts->get_rng(); maxCorners = rng.uniform( 50, 100 ); qualityLevel = 0.01; minDistance = 10; blockSize = 3; gradientSize = 3; useHarrisDetector = false; k = 0.04; mask = Mat(); test_case_count = 4; SrcType = 0; } int CV_GoodFeatureToTTest::prepare_test_case( int test_case_idx ) { const static int types[] = { CV_32FC1, CV_8UC1 }; cvtest::TS& tst = *cvtest::TS::ptr(); src = imread(string(tst.get_data_path()) + "shared/fruits.png", IMREAD_COLOR); CV_Assert(src.data != NULL); cvtColor( src, src_gray, CV_BGR2GRAY ); SrcType = types[test_case_idx & 0x1]; useHarrisDetector = test_case_idx & 2 ? true : false; return 1; } void CV_GoodFeatureToTTest::run_func() { int cn = src_gray.channels(); CV_Assert( cn == 1 ); CV_Assert( ( CV_MAT_DEPTH(SrcType) == CV_32FC1 ) || ( CV_MAT_DEPTH(SrcType) == CV_8UC1 )); TEST_MESSAGEL (" maxCorners = ", maxCorners) if (useHarrisDetector) { TEST_MESSAGE (" useHarrisDetector = true\n"); } else { TEST_MESSAGE (" useHarrisDetector = false\n"); } if( CV_MAT_DEPTH(SrcType) == CV_32FC1) { if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1); else src_gray32f = src_gray.clone(); TEST_MESSAGE ("goodFeaturesToTrack 32f\n") goodFeaturesToTrack( src_gray32f, corners, maxCorners, qualityLevel, minDistance, Mat(), blockSize, gradientSize, useHarrisDetector, k ); } else { if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1); else src_gray8U = src_gray.clone(); TEST_MESSAGE ("goodFeaturesToTrack 8U\n") goodFeaturesToTrack( src_gray8U, corners, maxCorners, qualityLevel, minDistance, Mat(), blockSize, gradientSize, useHarrisDetector, k ); } } int CV_GoodFeatureToTTest::validate_test_results( int test_case_idx ) { static const double eps = 2e-6; if( CV_MAT_DEPTH(SrcType) == CV_32FC1 ) { if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1); else src_gray32f = src_gray.clone(); TEST_MESSAGE ("test_goodFeaturesToTrack 32f\n") test_goodFeaturesToTrack( src_gray32f, Refcorners, maxCorners, qualityLevel, minDistance, Mat(), blockSize, gradientSize, useHarrisDetector, k ); } else { if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1); else src_gray8U = src_gray.clone(); TEST_MESSAGE ("test_goodFeaturesToTrack 8U\n") test_goodFeaturesToTrack( src_gray8U, Refcorners, maxCorners, qualityLevel, minDistance, Mat(), blockSize, gradientSize, useHarrisDetector, k ); } double e =norm(corners, Refcorners); if (e > eps) { TEST_MESSAGEL ("Number of features: Refcorners = ", Refcorners.size()) TEST_MESSAGEL (" TestCorners = ", corners.size()) TEST_MESSAGE ("\n") ts->printf(cvtest::TS::CONSOLE, "actual error: %g, expected: %g", e, eps); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); for(int i = 0; i < (int)std::min((unsigned int)(corners.size()), (unsigned int)(Refcorners.size())); i++){ if ( (corners[i].x != Refcorners[i].x) || (corners[i].y != Refcorners[i].y)) printf("i = %i X %2.2f Xref %2.2f Y %2.2f Yref %2.2f\n",i,corners[i].x,Refcorners[i].x,corners[i].y,Refcorners[i].y); } } else { TEST_MESSAGEL (" Refcorners = ", Refcorners.size()) TEST_MESSAGEL (" TestCorners = ", corners.size()) TEST_MESSAGE ("\n") ts->set_failed_test_info(cvtest::TS::OK); } return BaseTest::validate_test_results(test_case_idx); } TEST(Imgproc_GoodFeatureToT, accuracy) { CV_GoodFeatureToTTest test; test.safe_run(); } /* End of file. */