#!/usr/bin/env python from itertools import product from functools import reduce import numpy as np import cv2 as cv from tests_common import NewOpenCVTests def norm_inf(x, y=None): def norm(vec): return np.linalg.norm(vec.flatten(), np.inf) x = x.astype(np.float64) return norm(x) if y is None else norm(x - y.astype(np.float64)) def norm_l1(x, y=None): def norm(vec): return np.linalg.norm(vec.flatten(), 1) x = x.astype(np.float64) return norm(x) if y is None else norm(x - y.astype(np.float64)) def norm_l2(x, y=None): def norm(vec): return np.linalg.norm(vec.flatten()) x = x.astype(np.float64) return norm(x) if y is None else norm(x - y.astype(np.float64)) def norm_l2sqr(x, y=None): def norm(vec): return np.square(vec).sum() x = x.astype(np.float64) return norm(x) if y is None else norm(x - y.astype(np.float64)) def norm_hamming(x, y=None): def norm(vec): return sum(bin(i).count('1') for i in vec.flatten()) return norm(x) if y is None else norm(np.bitwise_xor(x, y)) def norm_hamming2(x, y=None): def norm(vec): def element_norm(element): binary_str = bin(element).split('b')[-1] if len(binary_str) % 2 == 1: binary_str = '0' + binary_str gen = filter(lambda p: p != '00', (binary_str[i:i+2] for i in range(0, len(binary_str), 2))) return sum(1 for _ in gen) return sum(element_norm(element) for element in vec.flatten()) return norm(x) if y is None else norm(np.bitwise_xor(x, y)) norm_type_under_test = { cv.NORM_INF: norm_inf, cv.NORM_L1: norm_l1, cv.NORM_L2: norm_l2, cv.NORM_L2SQR: norm_l2sqr, cv.NORM_HAMMING: norm_hamming, cv.NORM_HAMMING2: norm_hamming2 } norm_name = { cv.NORM_INF: 'inf', cv.NORM_L1: 'L1', cv.NORM_L2: 'L2', cv.NORM_L2SQR: 'L2SQR', cv.NORM_HAMMING: 'Hamming', cv.NORM_HAMMING2: 'Hamming2' } def get_element_types(norm_type): if norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2): return (np.uint8,) else: return (np.uint8, np.int8, np.uint16, np.int16, np.int32, np.float32, np.float64, np.float16) def generate_vector(shape, dtype): if np.issubdtype(dtype, np.integer): return np.random.randint(0, 100, shape).astype(dtype) else: return np.random.normal(10., 12.5, shape).astype(dtype) shapes = (1, 2, 3, 5, 7, 16, (1, 1), (2, 2), (3, 5), (1, 7)) class norm_test(NewOpenCVTests): def test_norm_for_one_array(self): np.random.seed(123) for norm_type, norm in norm_type_under_test.items(): element_types = get_element_types(norm_type) for shape, element_type in product(shapes, element_types): array = generate_vector(shape, element_type) expected = norm(array) actual = cv.norm(array, norm_type) self.assertAlmostEqual( expected, actual, places=2, msg='Array {0} of {1} and norm {2}'.format( array, element_type.__name__, norm_name[norm_type] ) ) def test_norm_for_two_arrays(self): np.random.seed(456) for norm_type, norm in norm_type_under_test.items(): element_types = get_element_types(norm_type) for shape, element_type in product(shapes, element_types): first = generate_vector(shape, element_type) second = generate_vector(shape, element_type) expected = norm(first, second) actual = cv.norm(first, second, norm_type) self.assertAlmostEqual( expected, actual, places=2, msg='Arrays {0} {1} of type {2} and norm {3}'.format( first, second, element_type.__name__, norm_name[norm_type] ) ) def test_norm_fails_for_wrong_type(self): for norm_type in (cv.NORM_HAMMING, cv.NORM_HAMMING2): with self.assertRaises(Exception, msg='Type is not checked {0}'.format( norm_name[norm_type] )): cv.norm(np.array([1, 2], dtype=np.int32), norm_type) def test_norm_fails_for_array_and_scalar(self): for norm_type in norm_type_under_test: with self.assertRaises(Exception, msg='Exception is not thrown for {0}'.format( norm_name[norm_type] )): cv.norm(np.array([1, 2], dtype=np.uint8), 123, norm_type) def test_norm_fails_for_scalar_and_array(self): for norm_type in norm_type_under_test: with self.assertRaises(Exception, msg='Exception is not thrown for {0}'.format( norm_name[norm_type] )): cv.norm(4, np.array([1, 2], dtype=np.uint8), norm_type) def test_norm_fails_for_array_and_norm_type_as_scalar(self): for norm_type in norm_type_under_test: with self.assertRaises(Exception, msg='Exception is not thrown for {0}'.format( norm_name[norm_type] )): cv.norm(np.array([3, 4, 5], dtype=np.uint8), norm_type, normType=norm_type) if __name__ == '__main__': NewOpenCVTests.bootstrap()