/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2014, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_imgproc.hpp" #include "opencv2/core/hal/intrin.hpp" #include #include "opencv2/core/openvx/ovx_defs.hpp" namespace cv { #ifdef HAVE_IPP static bool ipp_Canny(const Mat& src , const Mat& dx_, const Mat& dy_, Mat& dst, float low, float high, bool L2gradient, int aperture_size) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP(); #if IPP_DISABLE_PERF_CANNY_MT if(cv::getNumThreads()>1) return false; #endif ::ipp::IwiSize size(dst.cols, dst.rows); IppDataType type = ippiGetDataType(dst.depth()); int channels = dst.channels(); IppNormType norm = (L2gradient)?ippNormL2:ippNormL1; if(size.width <= 3 || size.height <= 3) return false; if(channels != 1) return false; if(type != ipp8u) return false; if(src.empty()) { try { ::ipp::IwiImage iwSrcDx; ::ipp::IwiImage iwSrcDy; ::ipp::IwiImage iwDst; ippiGetImage(dx_, iwSrcDx); ippiGetImage(dy_, iwSrcDy); ippiGetImage(dst, iwDst); CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterCannyDeriv, iwSrcDx, iwSrcDy, iwDst, low, high, ::ipp::IwiFilterCannyDerivParams(norm)); } catch (const ::ipp::IwException &) { return false; } } else { IppiMaskSize kernel; if(aperture_size == 3) kernel = ippMskSize3x3; else if(aperture_size == 5) kernel = ippMskSize5x5; else return false; try { ::ipp::IwiImage iwSrc; ::ipp::IwiImage iwDst; ippiGetImage(src, iwSrc); ippiGetImage(dst, iwDst); CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterCanny, iwSrc, iwDst, low, high, ::ipp::IwiFilterCannyParams(ippFilterSobel, kernel, norm), ippBorderRepl); } catch (const ::ipp::IwException &) { return false; } } return true; #else CV_UNUSED(src); CV_UNUSED(dx_); CV_UNUSED(dy_); CV_UNUSED(dst); CV_UNUSED(low); CV_UNUSED(high); CV_UNUSED(L2gradient); CV_UNUSED(aperture_size); return false; #endif } #endif #ifdef HAVE_OPENCL template static bool ocl_Canny(InputArray _src, const UMat& dx_, const UMat& dy_, OutputArray _dst, float low_thresh, float high_thresh, int aperture_size, bool L2gradient, int cn, const Size & size) { CV_INSTRUMENT_REGION_OPENCL(); UMat map; const ocl::Device &dev = ocl::Device::getDefault(); int max_wg_size = (int)dev.maxWorkGroupSize(); int lSizeX = 32; int lSizeY = max_wg_size / 32; if (lSizeY == 0) { lSizeX = 16; lSizeY = max_wg_size / 16; } if (lSizeY == 0) { lSizeY = 1; } if (aperture_size == 7) { low_thresh = low_thresh / 16.0f; high_thresh = high_thresh / 16.0f; } if (L2gradient) { low_thresh = std::min(32767.0f, low_thresh); high_thresh = std::min(32767.0f, high_thresh); if (low_thresh > 0) low_thresh *= low_thresh; if (high_thresh > 0) high_thresh *= high_thresh; } int low = cvFloor(low_thresh), high = cvFloor(high_thresh); if (!useCustomDeriv && aperture_size == 3 && !_src.isSubmatrix()) { /* stage1_with_sobel: Sobel operator Calc magnitudes Non maxima suppression Double thresholding */ char cvt[40]; ocl::Kernel with_sobel("stage1_with_sobel", ocl::imgproc::canny_oclsrc, format("-D WITH_SOBEL -D cn=%d -D TYPE=%s -D convert_floatN=%s -D floatN=%s -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s", cn, ocl::memopTypeToStr(_src.depth()), ocl::convertTypeStr(_src.depth(), CV_32F, cn, cvt), ocl::typeToStr(CV_MAKE_TYPE(CV_32F, cn)), lSizeX, lSizeY, L2gradient ? " -D L2GRAD" : "")); if (with_sobel.empty()) return false; UMat src = _src.getUMat(); map.create(size, CV_32S); with_sobel.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(map), (float) low, (float) high); size_t globalsize[2] = { (size_t)size.width, (size_t)size.height }, localsize[2] = { (size_t)lSizeX, (size_t)lSizeY }; if (!with_sobel.run(2, globalsize, localsize, false)) return false; } else { /* stage1_without_sobel: Calc magnitudes Non maxima suppression Double thresholding */ double scale = 1.0; if (aperture_size == 7) { scale = 1 / 16.0; } UMat dx, dy; if (!useCustomDeriv) { Sobel(_src, dx, CV_16S, 1, 0, aperture_size, scale, 0, BORDER_REPLICATE); Sobel(_src, dy, CV_16S, 0, 1, aperture_size, scale, 0, BORDER_REPLICATE); } else { dx = dx_; dy = dy_; } ocl::Kernel without_sobel("stage1_without_sobel", ocl::imgproc::canny_oclsrc, format("-D WITHOUT_SOBEL -D cn=%d -D GRP_SIZEX=%d -D GRP_SIZEY=%d%s", cn, lSizeX, lSizeY, L2gradient ? " -D L2GRAD" : "")); if (without_sobel.empty()) return false; map.create(size, CV_32S); without_sobel.args(ocl::KernelArg::ReadOnlyNoSize(dx), ocl::KernelArg::ReadOnlyNoSize(dy), ocl::KernelArg::WriteOnly(map), low, high); size_t globalsize[2] = { (size_t)size.width, (size_t)size.height }, localsize[2] = { (size_t)lSizeX, (size_t)lSizeY }; if (!without_sobel.run(2, globalsize, localsize, false)) return false; } int PIX_PER_WI = 8; /* stage2: hysteresis (add weak edges if they are connected with strong edges) */ int sizey = lSizeY / PIX_PER_WI; if (sizey == 0) sizey = 1; size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + PIX_PER_WI - 1) / PIX_PER_WI }, localsize[2] = { (size_t)lSizeX, (size_t)sizey }; ocl::Kernel edgesHysteresis("stage2_hysteresis", ocl::imgproc::canny_oclsrc, format("-D STAGE2 -D PIX_PER_WI=%d -D LOCAL_X=%d -D LOCAL_Y=%d", PIX_PER_WI, lSizeX, sizey)); if (edgesHysteresis.empty()) return false; edgesHysteresis.args(ocl::KernelArg::ReadWrite(map)); if (!edgesHysteresis.run(2, globalsize, localsize, false)) return false; // get edges ocl::Kernel getEdgesKernel("getEdges", ocl::imgproc::canny_oclsrc, format("-D GET_EDGES -D PIX_PER_WI=%d", PIX_PER_WI)); if (getEdgesKernel.empty()) return false; _dst.create(size, CV_8UC1); UMat dst = _dst.getUMat(); getEdgesKernel.args(ocl::KernelArg::ReadOnly(map), ocl::KernelArg::WriteOnlyNoSize(dst)); return getEdgesKernel.run(2, globalsize, NULL, false); } #endif #define CANNY_PUSH(map, stack) *map = 2, stack.push_back(map) #define CANNY_CHECK(m, high, map, stack) \ if (m > high) \ CANNY_PUSH(map, stack); \ else \ *map = 0 class parallelCanny : public ParallelLoopBody { public: parallelCanny(const Mat &_src, Mat &_map, std::deque &borderPeaksParallel, int _low, int _high, int _aperture_size, bool _L2gradient) : src(_src), src2(_src), map(_map), _borderPeaksParallel(borderPeaksParallel), low(_low), high(_high), aperture_size(_aperture_size), L2gradient(_L2gradient) { #if CV_SIMD for(int i = 0; i < v_int8::nlanes; ++i) { smask[i] = 0; smask[i + v_int8::nlanes] = (schar)-1; } if (true) _map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_SIMD_WIDTH + 1), CV_SIMD_WIDTH), CV_8UC1); else #endif _map.create(src.rows + 2, src.cols + 2, CV_8UC1); map = _map; map.row(0).setTo(1); map.row(src.rows + 1).setTo(1); mapstep = map.cols; needGradient = true; cn = src.channels(); } parallelCanny(const Mat &_dx, const Mat &_dy, Mat &_map, std::deque &borderPeaksParallel, int _low, int _high, bool _L2gradient) : src(_dx), src2(_dy), map(_map), _borderPeaksParallel(borderPeaksParallel), low(_low), high(_high), aperture_size(0), L2gradient(_L2gradient) { #if CV_SIMD for(int i = 0; i < v_int8::nlanes; ++i) { smask[i] = 0; smask[i + v_int8::nlanes] = (schar)-1; } if (true) _map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_SIMD_WIDTH + 1), CV_SIMD_WIDTH), CV_8UC1); else #endif _map.create(src.rows + 2, src.cols + 2, CV_8UC1); map = _map; map.row(0).setTo(1); map.row(src.rows + 1).setTo(1); mapstep = map.cols; needGradient = false; cn = src.channels(); } ~parallelCanny() {} parallelCanny& operator=(const parallelCanny&) { return *this; } void operator()(const Range &boundaries) const CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_DbgAssert(cn > 0); Mat dx, dy; AutoBuffer dxMax(0), dyMax(0); std::deque stack, borderPeaksLocal; const int rowStart = max(0, boundaries.start - 1), rowEnd = min(src.rows, boundaries.end + 1); int *_mag_p, *_mag_a, *_mag_n; short *_dx, *_dy, *_dx_a = NULL, *_dy_a = NULL, *_dx_n = NULL, *_dy_n = NULL; uchar *_pmap; double scale = 1.0; CV_TRACE_REGION("gradient") if(needGradient) { if (aperture_size == 7) { scale = 1 / 16.0; } Sobel(src.rowRange(rowStart, rowEnd), dx, CV_16S, 1, 0, aperture_size, scale, 0, BORDER_REPLICATE); Sobel(src.rowRange(rowStart, rowEnd), dy, CV_16S, 0, 1, aperture_size, scale, 0, BORDER_REPLICATE); } else { dx = src.rowRange(rowStart, rowEnd); dy = src2.rowRange(rowStart, rowEnd); } CV_TRACE_REGION_NEXT("magnitude"); if(cn > 1) { dxMax.allocate(2 * dx.cols); dyMax.allocate(2 * dy.cols); _dx_a = dxMax.data(); _dx_n = _dx_a + dx.cols; _dy_a = dyMax.data(); _dy_n = _dy_a + dy.cols; } // _mag_p: previous row, _mag_a: actual row, _mag_n: next row #if CV_SIMD AutoBuffer buffer(3 * (mapstep * cn + CV_SIMD_WIDTH)); _mag_p = alignPtr(buffer.data() + 1, CV_SIMD_WIDTH); _mag_a = alignPtr(_mag_p + mapstep * cn, CV_SIMD_WIDTH); _mag_n = alignPtr(_mag_a + mapstep * cn, CV_SIMD_WIDTH); #else AutoBuffer buffer(3 * (mapstep * cn)); _mag_p = buffer.data() + 1; _mag_a = _mag_p + mapstep * cn; _mag_n = _mag_a + mapstep * cn; #endif // For the first time when just 2 rows are filled and for left and right borders if(rowStart == boundaries.start) memset(_mag_n - 1, 0, mapstep * sizeof(int)); else _mag_n[src.cols] = _mag_n[-1] = 0; _mag_a[src.cols] = _mag_a[-1] = _mag_p[src.cols] = _mag_p[-1] = 0; // calculate magnitude and angle of gradient, perform non-maxima suppression. // fill the map with one of the following values: // 0 - the pixel might belong to an edge // 1 - the pixel can not belong to an edge // 2 - the pixel does belong to an edge for (int i = rowStart; i <= boundaries.end; ++i) { // Scroll the ring buffer std::swap(_mag_n, _mag_a); std::swap(_mag_n, _mag_p); if(i < rowEnd) { // Next row calculation _dx = dx.ptr(i - rowStart); _dy = dy.ptr(i - rowStart); if (L2gradient) { int j = 0, width = src.cols * cn; #if CV_SIMD for ( ; j <= width - v_int16::nlanes; j += v_int16::nlanes) { v_int16 v_dx = vx_load((const short*)(_dx + j)); v_int16 v_dy = vx_load((const short*)(_dy + j)); v_int32 v_dxp_low, v_dxp_high; v_int32 v_dyp_low, v_dyp_high; v_expand(v_dx, v_dxp_low, v_dxp_high); v_expand(v_dy, v_dyp_low, v_dyp_high); v_store_aligned((int *)(_mag_n + j), v_dxp_low*v_dxp_low+v_dyp_low*v_dyp_low); v_store_aligned((int *)(_mag_n + j + v_int32::nlanes), v_dxp_high*v_dxp_high+v_dyp_high*v_dyp_high); } #endif for ( ; j < width; ++j) _mag_n[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j]; } else { int j = 0, width = src.cols * cn; #if CV_SIMD for(; j <= width - v_int16::nlanes; j += v_int16::nlanes) { v_int16 v_dx = vx_load((const short *)(_dx + j)); v_int16 v_dy = vx_load((const short *)(_dy + j)); v_dx = v_reinterpret_as_s16(v_abs(v_dx)); v_dy = v_reinterpret_as_s16(v_abs(v_dy)); v_int32 v_dx_ml, v_dy_ml, v_dx_mh, v_dy_mh; v_expand(v_dx, v_dx_ml, v_dx_mh); v_expand(v_dy, v_dy_ml, v_dy_mh); v_store_aligned((int *)(_mag_n + j), v_dx_ml + v_dy_ml); v_store_aligned((int *)(_mag_n + j + v_int32::nlanes), v_dx_mh + v_dy_mh); } #endif for ( ; j < width; ++j) _mag_n[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j])); } if(cn > 1) { std::swap(_dx_n, _dx_a); std::swap(_dy_n, _dy_a); for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn) { int maxIdx = jn; for(int k = 1; k < cn; ++k) if(_mag_n[jn + k] > _mag_n[maxIdx]) maxIdx = jn + k; _mag_n[j] = _mag_n[maxIdx]; _dx_n[j] = _dx[maxIdx]; _dy_n[j] = _dy[maxIdx]; } _mag_n[src.cols] = 0; } // at the very beginning we do not have a complete ring // buffer of 3 magnitude rows for non-maxima suppression if (i <= boundaries.start) continue; } else { memset(_mag_n - 1, 0, mapstep * sizeof(int)); if(cn > 1) { std::swap(_dx_n, _dx_a); std::swap(_dy_n, _dy_a); } } // From here actual src row is (i - 1) // Set left and right border to 1 #if CV_SIMD if (true) _pmap = map.ptr(i) + CV_SIMD_WIDTH; else #endif _pmap = map.ptr(i) + 1; _pmap[src.cols] =_pmap[-1] = 1; if(cn == 1) { _dx = dx.ptr(i - rowStart - 1); _dy = dy.ptr(i - rowStart - 1); } else { _dx = _dx_a; _dy = _dy_a; } const int TG22 = 13573; int j = 0; #if CV_SIMD { const v_int32 v_low = vx_setall_s32(low); const v_int8 v_one = vx_setall_s8(1); for (; j <= src.cols - v_int8::nlanes; j += v_int8::nlanes) { v_store_aligned((signed char*)(_pmap + j), v_one); v_int8 v_cmp = v_pack(v_pack(vx_load_aligned((const int*)(_mag_a + j )) > v_low, vx_load_aligned((const int*)(_mag_a + j + v_int32::nlanes)) > v_low), v_pack(vx_load_aligned((const int*)(_mag_a + j + 2*v_int32::nlanes)) > v_low, vx_load_aligned((const int*)(_mag_a + j + 3*v_int32::nlanes)) > v_low)); while (v_check_any(v_cmp)) { int l = v_scan_forward(v_cmp); v_cmp &= vx_load(smask + v_int8::nlanes - 1 - l); int k = j + l; int m = _mag_a[k]; short xs = _dx[k]; short ys = _dy[k]; int x = (int)std::abs(xs); int y = (int)std::abs(ys) << 15; int tg22x = x * TG22; if (y < tg22x) { if (m > _mag_a[k - 1] && m >= _mag_a[k + 1]) { CANNY_CHECK(m, high, (_pmap+k), stack); } } else { int tg67x = tg22x + (x << 16); if (y > tg67x) { if (m > _mag_p[k] && m >= _mag_n[k]) { CANNY_CHECK(m, high, (_pmap+k), stack); } } else { int s = (xs ^ ys) < 0 ? -1 : 1; if(m > _mag_p[k - s] && m > _mag_n[k + s]) { CANNY_CHECK(m, high, (_pmap+k), stack); } } } } } } #endif for (; j < src.cols; j++) { int m = _mag_a[j]; if (m > low) { short xs = _dx[j]; short ys = _dy[j]; int x = (int)std::abs(xs); int y = (int)std::abs(ys) << 15; int tg22x = x * TG22; if (y < tg22x) { if (m > _mag_a[j - 1] && m >= _mag_a[j + 1]) { CANNY_CHECK(m, high, (_pmap+j), stack); continue; } } else { int tg67x = tg22x + (x << 16); if (y > tg67x) { if (m > _mag_p[j] && m >= _mag_n[j]) { CANNY_CHECK(m, high, (_pmap+j), stack); continue; } } else { int s = (xs ^ ys) < 0 ? -1 : 1; if(m > _mag_p[j - s] && m > _mag_n[j + s]) { CANNY_CHECK(m, high, (_pmap+j), stack); continue; } } } } _pmap[j] = 1; } } // Not for first row of first slice or last row of last slice uchar *pmapLower = (rowStart == 0) ? map.data : (map.data + (boundaries.start + 2) * mapstep); uint pmapDiff = (uint)(((rowEnd == src.rows) ? map.datalimit : (map.data + boundaries.end * mapstep)) - pmapLower); // now track the edges (hysteresis thresholding) CV_TRACE_REGION_NEXT("hysteresis"); while (!stack.empty()) { uchar *m = stack.back(); stack.pop_back(); // Stops thresholding from expanding to other slices by sending pixels in the borders of each // slice in a queue to be serially processed later. if((unsigned)(m - pmapLower) < pmapDiff) { if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack); if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack); if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack); if (!m[-1]) CANNY_PUSH((m-1), stack); if (!m[1]) CANNY_PUSH((m+1), stack); if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack); if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack); if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack); } else { borderPeaksLocal.push_back(m); ptrdiff_t mapstep2 = m < pmapLower ? mapstep : -mapstep; if (!m[-1]) CANNY_PUSH((m-1), stack); if (!m[1]) CANNY_PUSH((m+1), stack); if (!m[mapstep2-1]) CANNY_PUSH((m+mapstep2-1), stack); if (!m[mapstep2]) CANNY_PUSH((m+mapstep2), stack); if (!m[mapstep2+1]) CANNY_PUSH((m+mapstep2+1), stack); } } if(!borderPeaksLocal.empty()) { AutoLock lock(mutex); _borderPeaksParallel.insert(_borderPeaksParallel.end(), borderPeaksLocal.begin(), borderPeaksLocal.end()); } } private: const Mat &src, &src2; Mat ↦ std::deque &_borderPeaksParallel; int low, high, aperture_size; bool L2gradient, needGradient; ptrdiff_t mapstep; int cn; mutable Mutex mutex; #if CV_SIMD schar smask[2*v_int8::nlanes]; #endif }; class finalPass : public ParallelLoopBody { public: finalPass(const Mat &_map, Mat &_dst) : map(_map), dst(_dst) { dst = _dst; } ~finalPass() {} void operator()(const Range &boundaries) const CV_OVERRIDE { // the final pass, form the final image for (int i = boundaries.start; i < boundaries.end; i++) { int j = 0; uchar *pdst = dst.ptr(i); const uchar *pmap = map.ptr(i + 1); #if CV_SIMD if (true) pmap += CV_SIMD_WIDTH; else #endif pmap += 1; #if CV_SIMD { const v_uint8 v_zero = vx_setzero_u8(); const v_uint8 v_ff = ~v_zero; const v_uint8 v_two = vx_setall_u8(2); for (; j <= dst.cols - v_uint8::nlanes; j += v_uint8::nlanes) { v_uint8 v_pmap = vx_load_aligned((const unsigned char*)(pmap + j)); v_pmap = v_select(v_pmap == v_two, v_ff, v_zero); v_store((pdst + j), v_pmap); } if (j <= dst.cols - v_uint8::nlanes/2) { v_uint8 v_pmap = vx_load_low((const unsigned char*)(pmap + j)); v_pmap = v_select(v_pmap == v_two, v_ff, v_zero); v_store_low((pdst + j), v_pmap); j += v_uint8::nlanes/2; } } #endif for (; j < dst.cols; j++) { pdst[j] = (uchar)-(pmap[j] >> 1); } } } private: const Mat ↦ Mat &dst; finalPass(const finalPass&); // = delete finalPass& operator=(const finalPass&); // = delete }; #ifdef HAVE_OPENVX namespace ovx { template <> inline bool skipSmallImages(int w, int h) { return w*h < 640 * 480; } } static bool openvx_canny(const Mat& src, Mat& dst, int loVal, int hiVal, int kSize, bool useL2) { using namespace ivx; Context context = ovx::getOpenVXContext(); try { Image _src = Image::createFromHandle( context, Image::matTypeToFormat(src.type()), Image::createAddressing(src), src.data ); Image _dst = Image::createFromHandle( context, Image::matTypeToFormat(dst.type()), Image::createAddressing(dst), dst.data ); Threshold threshold = Threshold::createRange(context, VX_TYPE_UINT8, saturate_cast(loVal), saturate_cast(hiVal)); #if 0 // the code below is disabled because vxuCannyEdgeDetector() // ignores context attribute VX_CONTEXT_IMMEDIATE_BORDER // FIXME: may fail in multithread case border_t prevBorder = context.immediateBorder(); context.setImmediateBorder(VX_BORDER_REPLICATE); IVX_CHECK_STATUS( vxuCannyEdgeDetector(context, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) ); context.setImmediateBorder(prevBorder); #else // alternative code without vxuCannyEdgeDetector() Graph graph = Graph::create(context); ivx::Node node = ivx::Node(vxCannyEdgeDetectorNode(graph, _src, threshold, kSize, (useL2 ? VX_NORM_L2 : VX_NORM_L1), _dst) ); node.setBorder(VX_BORDER_REPLICATE); graph.verify(); graph.process(); #endif #ifdef VX_VERSION_1_1 _src.swapHandle(); _dst.swapHandle(); #endif } catch(const WrapperError& e) { VX_DbgThrow(e.what()); } catch(const RuntimeError& e) { VX_DbgThrow(e.what()); } return true; } #endif // HAVE_OPENVX void Canny( InputArray _src, OutputArray _dst, double low_thresh, double high_thresh, int aperture_size, bool L2gradient ) { CV_INSTRUMENT_REGION(); CV_Assert( _src.depth() == CV_8U ); const Size size = _src.size(); // we don't support inplace parameters in case with RGB/BGR src CV_Assert((_dst.getObj() != _src.getObj() || _src.type() == CV_8UC1) && "Inplace parameters are not supported"); _dst.create(size, CV_8U); if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT) { // backward compatibility aperture_size &= ~CV_CANNY_L2_GRADIENT; L2gradient = true; } if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7))) CV_Error(CV_StsBadFlag, "Aperture size should be odd between 3 and 7"); if (aperture_size == 7) { low_thresh = low_thresh / 16.0; high_thresh = high_thresh / 16.0; } if (low_thresh > high_thresh) std::swap(low_thresh, high_thresh); CV_OCL_RUN(_dst.isUMat() && (_src.channels() == 1 || _src.channels() == 3), ocl_Canny(_src, UMat(), UMat(), _dst, (float)low_thresh, (float)high_thresh, aperture_size, L2gradient, _src.channels(), size)) Mat src0 = _src.getMat(), dst = _dst.getMat(); Mat src(src0.size(), src0.type(), src0.data, src0.step); CALL_HAL(canny, cv_hal_canny, src.data, src.step, dst.data, dst.step, src.cols, src.rows, src.channels(), low_thresh, high_thresh, aperture_size, L2gradient); CV_OVX_RUN( false && /* disabling due to accuracy issues */ src.type() == CV_8UC1 && !src.isSubmatrix() && src.cols >= aperture_size && src.rows >= aperture_size && !ovx::skipSmallImages(src.cols, src.rows), openvx_canny( src, dst, cvFloor(low_thresh), cvFloor(high_thresh), aperture_size, L2gradient ) ) CV_IPP_RUN_FAST(ipp_Canny(src, Mat(), Mat(), dst, (float)low_thresh, (float)high_thresh, L2gradient, aperture_size)) if (L2gradient) { low_thresh = std::min(32767.0, low_thresh); high_thresh = std::min(32767.0, high_thresh); if (low_thresh > 0) low_thresh *= low_thresh; if (high_thresh > 0) high_thresh *= high_thresh; } int low = cvFloor(low_thresh); int high = cvFloor(high_thresh); // If Scharr filter: aperture size is 3, ksize2 is 1 int ksize2 = aperture_size < 0 ? 1 : aperture_size / 2; // Minimum number of threads should be 1, maximum should not exceed number of CPU's, because of overhead int numOfThreads = std::max(1, std::min(getNumThreads(), getNumberOfCPUs())); // Make a fallback for pictures with too few rows. int grainSize = src.rows / numOfThreads; int minGrainSize = 2 * (ksize2 + 1); if (grainSize < minGrainSize) numOfThreads = std::max(1, src.rows / minGrainSize); Mat map; std::deque stack; parallel_for_(Range(0, src.rows), parallelCanny(src, map, stack, low, high, aperture_size, L2gradient), numOfThreads); CV_TRACE_REGION("global_hysteresis"); // now track the edges (hysteresis thresholding) ptrdiff_t mapstep = map.cols; while (!stack.empty()) { uchar* m = stack.back(); stack.pop_back(); if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack); if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack); if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack); if (!m[-1]) CANNY_PUSH((m-1), stack); if (!m[1]) CANNY_PUSH((m+1), stack); if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack); if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack); if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack); } CV_TRACE_REGION_NEXT("finalPass"); parallel_for_(Range(0, src.rows), finalPass(map, dst), src.total()/(double)(1<<16)); } void Canny( InputArray _dx, InputArray _dy, OutputArray _dst, double low_thresh, double high_thresh, bool L2gradient ) { CV_INSTRUMENT_REGION(); CV_Assert(_dx.dims() == 2); CV_Assert(_dx.type() == CV_16SC1 || _dx.type() == CV_16SC3); CV_Assert(_dy.type() == _dx.type()); CV_Assert(_dx.sameSize(_dy)); if (low_thresh > high_thresh) std::swap(low_thresh, high_thresh); const Size size = _dx.size(); CV_OCL_RUN(_dst.isUMat(), ocl_Canny(UMat(), _dx.getUMat(), _dy.getUMat(), _dst, (float)low_thresh, (float)high_thresh, 0, L2gradient, _dx.channels(), size)) _dst.create(size, CV_8U); Mat dst = _dst.getMat(); Mat dx = _dx.getMat(); Mat dy = _dy.getMat(); CV_IPP_RUN_FAST(ipp_Canny(Mat(), dx, dy, dst, (float)low_thresh, (float)high_thresh, L2gradient, 0)) if (L2gradient) { low_thresh = std::min(32767.0, low_thresh); high_thresh = std::min(32767.0, high_thresh); if (low_thresh > 0) low_thresh *= low_thresh; if (high_thresh > 0) high_thresh *= high_thresh; } int low = cvFloor(low_thresh); int high = cvFloor(high_thresh); std::deque stack; Mat map; // Minimum number of threads should be 1, maximum should not exceed number of CPU's, because of overhead int numOfThreads = std::max(1, std::min(getNumThreads(), getNumberOfCPUs())); if (dx.rows / numOfThreads < 3) numOfThreads = std::max(1, dx.rows / 3); parallel_for_(Range(0, dx.rows), parallelCanny(dx, dy, map, stack, low, high, L2gradient), numOfThreads); CV_TRACE_REGION("global_hysteresis") // now track the edges (hysteresis thresholding) ptrdiff_t mapstep = map.cols; while (!stack.empty()) { uchar* m = stack.back(); stack.pop_back(); if (!m[-mapstep-1]) CANNY_PUSH((m-mapstep-1), stack); if (!m[-mapstep]) CANNY_PUSH((m-mapstep), stack); if (!m[-mapstep+1]) CANNY_PUSH((m-mapstep+1), stack); if (!m[-1]) CANNY_PUSH((m-1), stack); if (!m[1]) CANNY_PUSH((m+1), stack); if (!m[mapstep-1]) CANNY_PUSH((m+mapstep-1), stack); if (!m[mapstep]) CANNY_PUSH((m+mapstep), stack); if (!m[mapstep+1]) CANNY_PUSH((m+mapstep+1), stack); } CV_TRACE_REGION_NEXT("finalPass"); parallel_for_(Range(0, dx.rows), finalPass(map, dst), dx.total()/(double)(1<<16)); } } // namespace cv void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size ) { cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges); CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U ); cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255, (aperture_size & CV_CANNY_L2_GRADIENT) != 0); } /* End of file. */