/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include "../op_cuda.hpp" #include "../op_halide.hpp" #include "../op_inf_engine.hpp" #include "../ie_ngraph.hpp" #include "../op_vkcom.hpp" #include "../op_webnn.hpp" #include #include #include "opencv2/core/hal/hal.hpp" #include "opencv2/core/hal/intrin.hpp" #include #include #ifdef HAVE_OPENCL #include "opencl_kernels_dnn.hpp" using namespace cv::dnn::ocl4dnn; #endif #ifdef HAVE_TENGINE #include "../tengine4dnn/include/tengine_graph_convolution.hpp" #endif #ifdef HAVE_CUDA #include "../cuda4dnn/primitives/convolution.hpp" #include "../cuda4dnn/primitives/transpose_convolution.hpp" using namespace cv::dnn::cuda4dnn; #endif namespace cv { namespace dnn { class BaseConvolutionLayerImpl : public ConvolutionLayer { public: bool fusedWeights, fusedBias; std::vector weightsMultipliers; #ifdef HAVE_WEBNN int groups; #endif BaseConvolutionLayerImpl(const LayerParams ¶ms) { setParamsFrom(params); getConvolutionKernelParams(params, kernel_size, pads_begin, pads_end, strides, dilations, padMode, adjust_pads); numOutput = params.get("num_output"); int ngroups = params.get("group", 1); #ifdef HAVE_WEBNN groups = ngroups; #endif CV_Assert(numOutput % ngroups == 0); if (kernel_size.size() == 2) { kernel = Size(kernel_size[1], kernel_size[0]); stride = Size(strides[1], strides[0]); for (int i = 0; i < pads_begin.size(); i++) { if (pads_begin[i] != pads_end[i]) CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer"); } pad = Size(pads_begin[1], pads_begin[0]); dilation = Size(dilations[1], dilations[0]); adjustPad.height = adjust_pads[0]; adjustPad.width = adjust_pads[1]; } for (int i = 0; i < adjust_pads.size(); i++) { CV_Assert(adjust_pads[i] < strides[i]); } fusedWeights = false; fusedBias = false; } virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); CV_Assert((inputs.size() > outputs.size() && blobs.empty()) || (!inputs.empty() && (blobs.size() == 1 || blobs.size() == 2))); MatSize weightShape = blobs.empty() ? inputs[1].size : blobs[0].size; CV_Assert(inputs[0].dims == outputs[0].dims); if (weightShape.dims() == 3) { kernel_size.assign(1, kernel_size[0]); strides.assign(1, strides[0]); dilations.assign(1, dilations[0]); pads_begin.assign(1, pads_begin[0]); pads_end.assign(1, pads_end[0]); } CV_Assert(weightShape.dims() == kernel_size.size() + 2); for (int i = 0; i < kernel_size.size(); i++) { CV_Assert(weightShape[i + 2] == kernel_size[i]); } const Mat &input = inputs[0]; CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || input.dims == 4 || input.dims == 5) && (input.type() == CV_32F || input.type() == CV_16S)); for (size_t i = 0; i < outputs.size(); i++) { CV_Assert(inputs[i].type() == input.type()); CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || inputs[i].dims == 4 || inputs[i].dims == 5) && inputs[i].size[1] == input.size[1]); for (int j = 0; j < inputs[i].dims; j++) { CV_Assert(inputs[i].size[j] == input.size[j]); } } std::vector inpShape; std::vector outShape; for (int i = 2; i < inputs[0].dims; i++) { inpShape.push_back(inputs[0].size[i]); outShape.push_back(outputs[0].size[i]); } getConvPoolPaddings(inpShape, kernel_size, strides, padMode, pads_begin, pads_end); if (pads_begin.size() == 2) { for (int i = 0; i < pads_begin.size(); i++) { if (pads_begin[i] != pads_end[i]) CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer"); } pad = Size(pads_begin[1], pads_begin[0]); } fusedWeights = false; fusedBias = false; } bool hasBias() const { return blobs.size() >= 2; } virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0; bool is1x1() const { return (kernel.height == 1 && kernel.width == 1) && (stride.height == 1 && stride.width == 1) && (dilation.height == 1 && dilation.width == 1); } virtual bool tryFuse(Ptr& top) CV_OVERRIDE { Ptr blank_layer = top.dynamicCast(); if (blank_layer) return true; Mat w, b; top->getScaleShift(w, b); if (!w.empty() || !b.empty()) { fuseWeights(w, b); fusedWeights = fusedWeights || !w.empty(); fusedBias = fusedBias || (hasBias() && !w.empty()) || !b.empty(); return true; } return false; } virtual void fuseWeights(const Mat& w_, const Mat& b_) = 0; virtual void applyHalideScheduler(Ptr& node, const std::vector &inputs, const std::vector &outputs, int targetId) const CV_OVERRIDE { #ifdef HAVE_HALIDE if (targetId != DNN_TARGET_CPU) { Layer::applyHalideScheduler(node, inputs, outputs, targetId); return; } Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci"); Halide::Func& top = node.dynamicCast()->funcs[1]; Halide::Func& padded_input = node.dynamicCast()->funcs[0]; int outW, outH, outC, outN; getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN); if (outW == 1 || outH <= 2) return; if (is1x1() || outC <= 16) top.reorder(x, c, y) .split(y, yo, yi, 2) .fuse(yo, n, tile) .parallel(tile) .unroll(yi) .vectorize(x, outW >= 16 ? 16 : outW); else top.reorder(x, c, y) .split(y, yo, yi, 2) .split(c, co, ci, 16) .fuse(yo, co, tile).fuse(n, tile, tile) .parallel(tile) .unroll(yi) .vectorize(x, outW >= 16 ? 16 : outW); padded_input.compute_at(top, yi); #endif // HAVE_HALIDE } }; #define IS_POWER_LAYER(layer) \ (!layer.empty() && !layer->type.compare("Power")) //TODO: simultaneously convolution and bias addition for cache optimization class ConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl { public: enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F }; Mat weightsMat; std::vector biasvec; std::vector reluslope; Ptr activ; #ifdef HAVE_OPENCL Ptr > convolutionOp; std::vector umat_blobs; bool newActiv; ocl4dnnFusedActiv_t activType; float power; #endif #ifdef HAVE_TENGINE teng_graph_t tengine_graph; #endif #ifdef HAVE_CUDA cuda4dnn::ConvolutionConfiguration::FusionMode cudaFusionMode; cuda4dnn::ConvolutionConfiguration::ActivationType cudaActType; float cuda_relu_slope, cuda_crelu_floor, cuda_crelu_ceil; float cuda_power_exp, cuda_power_scale, cuda_power_shift; #endif ConvolutionLayerImpl(const LayerParams ¶ms) : BaseConvolutionLayerImpl(params) { #ifdef HAVE_OPENCL newActiv = false; activType = OCL4DNN_CONV_FUSED_ACTIV_NONE; power = 0.f; #endif #ifdef HAVE_CUDA cudaFusionMode = cuda4dnn::ConvolutionConfiguration::FusionMode::NONE; cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY; #endif #ifdef HAVE_TENGINE tengine_graph=NULL; #endif } #ifdef HAVE_TENGINE ~ConvolutionLayerImpl() { if(NULL != tengine_graph ) { tengine_release(tengine_graph); } } #endif MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE { CV_Assert(!blobs.empty()); int dims = inpShape.size(); int inpD = dims == 5 ? inpShape[2] : 1; int inpH = inpShape[dims - 2]; int inpW = inpShape.back(); int inpGroupCn = blobs[0].size[1]; int ksize = inpGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies()); return shape(inpD * inpH * inpW, ksize); } virtual bool supportBackend(int backendId) CV_OVERRIDE { size_t ksize = kernel_size.size(); #ifdef HAVE_CUDA if (backendId == DNN_BACKEND_CUDA) { /* only 1d, 2d and 3d convolutions supported */ if (ksize > 0 && ksize <= 3) return true; return false; } #endif #ifdef HAVE_INF_ENGINE if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { bool isArmTarget = preferableTarget == DNN_TARGET_CPU && isArmComputePlugin(); if (isArmTarget && blobs.empty()) return false; if (ksize == 1) return isArmTarget; if (ksize == 3) return preferableTarget != DNN_TARGET_MYRIAD && !isArmTarget; bool isMyriad = preferableTarget == DNN_TARGET_MYRIAD || preferableTarget == DNN_TARGET_HDDL; if (!isMyriad && blobs.empty()) return false; return (!isMyriad || dilation.width == dilation.height); } #endif if (backendId == DNN_BACKEND_OPENCV) return ksize >= 1 && ksize <= 3; #ifdef HAVE_HALIDE if (backendId == DNN_BACKEND_HALIDE) return ksize == 2 && !blobs.empty(); #endif #ifdef HAVE_VULKAN if (backendId == DNN_BACKEND_VKCOM) return ksize == 2; #endif #ifdef HAVE_WEBNN if (backendId == DNN_BACKEND_WEBNN) { if (ksize != 2) { CV_LOG_WARNING(NULL, "WebNN only supports Conv2d."); return false; } return true; } #endif return false; } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert(!blobs.empty() || inputs.size() > 1); const int* weightShape = blobs.empty() ? &inputs[1][0] : blobs[0].size.p; CV_Assert(!hasBias() || blobs[1].total() == (size_t)weightShape[0]); internals.clear(); CV_Assert(inputs.size() != 0); std::vector inpShape(inputs[0].begin() + 2, inputs[0].end()); int outCn = weightShape[0]; std::vector outShape; outShape.push_back(inputs[0][0]); outShape.push_back(outCn); int inpCn = inputs[0][1]; if (padMode.empty()) { for (int i = 0; i < inpShape.size(); i++) outShape.push_back((inpShape[i] + pads_begin[i] + pads_end[i] - dilations[i] * (kernel_size[i] - 1) - 1) / strides[i] + 1); } else { getConvPoolOutParams(inpShape, kernel_size, strides, padMode, dilations, outShape); } int ngroups = inpCn / weightShape[1]; if (ngroups == 0 || ngroups * weightShape[1] != inpCn) CV_Error(Error::StsError, format("Number of input channels should " "be multiple of %d but got %d", weightShape[1], inpCn)); CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0); outputs.resize(1, outShape); return false; } virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr); std::vector inputs; inputs_arr.getMatVector(inputs); // prepare weightsMat where each row is aligned and has enough zero padding on the right to // use vectorized (i.e. with intrinsics) loops without tail processing if (!blobs.empty()) { Mat wm = blobs[0].reshape(1, numOutput); if ((wm.step1() % VEC_ALIGN != 0) || !isAligned(wm.data) ) { int newcols = (int)alignSize(wm.step1(), VEC_ALIGN); Mat wm_buffer = Mat(numOutput, newcols, wm.type()); Mat wm_padding = wm_buffer.colRange(wm.cols, newcols); wm_padding.setTo(Scalar::all(0.)); Mat wm_aligned = wm_buffer.colRange(0, wm.cols); wm.copyTo(wm_aligned); wm = wm_aligned; } weightsMat = wm; } else { // initialized in .forward() weightsMat.release(); } weightsMultipliers.assign(numOutput, 1.0); Mat biasMat = hasBias() ? blobs[1].reshape(1, numOutput) : Mat(); biasvec.resize(numOutput+2); if( biasMat.empty() ) { for(int i = 0; i < numOutput; i++ ) biasvec[i] = 0.f; } else { for(int i = 0; i < numOutput; i++ ) biasvec[i] = biasMat.at(i); } #ifdef HAVE_TENGINE if(NULL != tengine_graph ) { tengine_release(tengine_graph); tengine_graph = NULL ; } #endif #ifdef HAVE_OPENCL convolutionOp.release(); #endif } bool setActivation(const Ptr& layer) CV_OVERRIDE { if ((!activ.empty() && !layer.empty()) || blobs.empty()) return false; activ = layer; if (activ.empty()) reluslope.clear(); #ifdef HAVE_OPENCL newActiv = true; activType = OCL4DNN_CONV_FUSED_ACTIV_NONE; if (IS_DNN_OPENCL_TARGET(preferableTarget)) { Ptr activ_power = activ.dynamicCast(); if (!activ_power.empty()) { if (activ_power->scale != 1.0f) // not supported well by implementation, #17964 { // FIXIT no way to check number of blobs (like, eltwise input) CV_LOG_DEBUG(NULL, "DNN/OpenCL: can't configure Power activation (scale != 1.0f)"); activ.release(); newActiv = false; return false; } if (activ_power->scale != 1.f || activ_power->shift != 0.f) { const int outCh = blobs[0].size[0]; fuseWeights(Mat(1, outCh, CV_32F, Scalar(activ_power->scale)), Mat(1, outCh, CV_32F, Scalar(activ_power->shift))); } power = activ_power->power; activType = OCL4DNN_CONV_FUSED_ACTIV_POWER; } Ptr activ_tanh = activ.dynamicCast(); if (!activ_tanh.empty()) { activType = OCL4DNN_CONV_FUSED_ACTIV_TANH; } } #endif #ifdef HAVE_CUDA if (activ.empty()) { /* setActivation was called with empty argument => reset all fusions */ cudaFusionMode = cuda4dnn::ConvolutionConfiguration::FusionMode::NONE; cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY; } if(IS_DNN_CUDA_TARGET(preferableTarget)) { CV_Assert(cudaFusionMode == ConvolutionConfiguration::FusionMode::NONE || cudaFusionMode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM); Ptr activ_relu = activ.dynamicCast(); if(!activ_relu.empty()) { cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::RELU; cuda_relu_slope = activ_relu->negativeSlope; } Ptr activ_relu6 = activ.dynamicCast(); if(!activ_relu6.empty()) { cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::CLIPPED_RELU; cuda_crelu_floor = activ_relu6->minValue; cuda_crelu_ceil = activ_relu6->maxValue; } Ptr activ_power = activ.dynamicCast(); if (!activ_power.empty()) { cuda_power_scale = activ_power->scale; cuda_power_shift = activ_power->shift; cuda_power_exp = activ_power->power; cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::POWER; } Ptr activ_tanh = activ.dynamicCast(); if(!activ_tanh.empty()) cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::TANH; Ptr activ_sigmoid = activ.dynamicCast(); if(!activ_sigmoid.empty()) cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::SIGMOID; Ptr activ_swish = activ.dynamicCast(); if(!activ_swish.empty()) cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::SWISH; Ptr activ_mish = activ.dynamicCast(); if(!activ_mish.empty()) cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::MISH; if (cudaActType == cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY) { /* no activation fused */ activ.reset(); } else { /* activation was fused */ if (cudaFusionMode == ConvolutionConfiguration::FusionMode::NONE) /* no previous fusion */ cudaFusionMode = ConvolutionConfiguration::FusionMode::ACTIVATION; /* now activation */ else if (cudaFusionMode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM) /* previously eltwise was fused */ cudaFusionMode = ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION; /* now activation on eltwise output */ } } #endif return !activ.empty(); } virtual bool tryFuse(Ptr& top) CV_OVERRIDE { #ifdef HAVE_CUDA if(IS_DNN_CUDA_TARGET(preferableTarget)) { Ptr eltwise = top.dynamicCast(); if (!eltwise.empty()) // && eltwise->op == EltwiseLayer::SUM && eltwise->coeffs.empty()) { /* we also need to check that the eltwise input does not require shortcut mechanism * it's difficult to verify it here but we hope that `fuseLayers` has done the check already */ if (cudaFusionMode == ConvolutionConfiguration::FusionMode::NONE) { /* no previous fusion */ cudaFusionMode = ConvolutionConfiguration::FusionMode::ELTWISE_SUM; /* now eltwise */ return true; } else if(cudaFusionMode == ConvolutionConfiguration::FusionMode::ACTIVATION) { /* previously an activation was fused */ cudaFusionMode = ConvolutionConfiguration::FusionMode::ACTIVATION_THEN_ELTWISE_SUM; return true; } return false; } } #endif return BaseConvolutionLayerImpl::tryFuse(top); } void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE { // Convolution weights have OIHW data layout. Parameters fusion in case of // (conv(I) + b1 ) * w + b2 // means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2] const int outCn = weightsMat.size[0]; Mat w = w_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(w_.at(0))) : w_; Mat b = b_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(b_.at(0))) : b_; CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2, w.empty() || outCn == w.total(), b.empty() || outCn == b.total()); if (!w.empty()) { // Keep origin weights unchanged. if (weightsMat.data == blobs[0].data) weightsMat = weightsMat.clone(); Mat originWeights = blobs[0].reshape(1, outCn); for (int i = 0; i < outCn; ++i) { double wi = w.at(i); weightsMultipliers[i] *= wi; cv::multiply(originWeights.row(i), weightsMultipliers[i], weightsMat.row(i)); biasvec[i] *= wi; } } if (!b.empty()) { for (int i = 0; i < outCn; ++i) biasvec[i] += b.at(i); } biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1]; } virtual Ptr initVkCom(const std::vector > &inputs) CV_OVERRIDE { #ifdef HAVE_VULKAN CV_Assert(!blobs.empty()); int out_channel = blobs[0].size[0]; bool has_bias = hasBias() || fusedBias; int filter_size[2] = {kernel.height, kernel.width}; int pad_size[2] = {pad.height, pad.width}; int stride_size[2] = {stride.height, stride.width}; int dilation_size[2] = {dilation.height, dilation.width}; int activation = 0; vkcom::Tensor input_tensor = VkComTensor(inputs[0]); int in_channel = input_tensor.dimSize(1); int group = in_channel / blobs[0].size[1]; // TODO: support group > 1 if (group != 1) return Ptr(); int padding_mode; if (padMode.empty()) { padding_mode = vkcom::kPaddingModeCaffe; } else if (padMode == "VALID") { padding_mode = vkcom::kPaddingModeValid; } else if (padMode == "SAME") { padding_mode = vkcom::kPaddingModeSame; } else CV_Error(Error::StsError, "Unsupported padding mode " + padMode); std::shared_ptr op(new vkcom::OpConv(out_channel, has_bias, filter_size, pad_size, stride_size, dilation_size, activation, group, padding_mode)); std::vector > blobsWrapper; if (fusedWeights) { Mat wm; weightsMat.copyTo(wm); // to handle the case of isContinuous() == false wm = wm.reshape(1, blobs[0].dims, blobs[0].size); blobsWrapper.push_back(Ptr(new VkComBackendWrapper(wm))); } else { blobsWrapper.push_back(Ptr(new VkComBackendWrapper(blobs[0]))); } if (has_bias) { Mat biasesMat({out_channel}, CV_32F, &biasvec[0]); blobsWrapper.push_back(Ptr(new VkComBackendWrapper(biasesMat))); } return Ptr(new VkComBackendNode(inputs, op, blobsWrapper)); #endif // HAVE_VULKAN return Ptr(); } virtual Ptr initHalide(const std::vector > &inputs) CV_OVERRIDE { #ifdef HAVE_HALIDE CV_Assert(!blobs.empty()); Halide::Buffer inputBuffer = halideBuffer(inputs[0]); const int inpCn = inputBuffer.channels(); const int outCn = blobs[0].size[0]; const int inpGroupCn = blobs[0].size[1]; const int group = inpCn / inpGroupCn; const int outGroupCn = outCn / group; Halide::Buffer weights = wrapToHalideBuffer(blobs[0]); Halide::Var x("x"), y("y"), c("c"), n("n"); Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); Halide::Func padded_input(name + "_constant_exterior"); if (pad.width || pad.height) { Halide::Func bounded = Halide::BoundaryConditions::constant_exterior(inputBuffer, 0); padded_input(x, y, c, n) = bounded(x, y, c, n); } else { padded_input(x, y, c, n) = inputBuffer(x, y, c, n); } Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn); Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width; Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height; Halide::Expr kc = r.z; for (int i = 1; i < group; ++i) { kc = select(c < outGroupCn * i, kc, inpGroupCn * i + r.z); } Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) * weights(r.x, r.y, r.z, c)); if (hasBias()) { Halide::Buffer bias = wrapToHalideBuffer(blobs[1], {outCn}); topExpr += bias(c); } top(x, y, c, n) = topExpr; return Ptr(new HalideBackendNode({ padded_input, top })); #endif // HAVE_HALIDE return Ptr(); } #ifdef HAVE_DNN_NGRAPH virtual Ptr initNgraph(const std::vector > &inputs, const std::vector >& nodes) CV_OVERRIDE { CV_Assert(!blobs.empty()); CV_Assert_N(inputs.size() >= 1, nodes.size() >= 1); auto& ieInpNode = nodes[0].dynamicCast()->node; std::vector dims = ieInpNode->get_shape(); CV_Check(dims.size(), dims.size() >= 3 && dims.size() <= 5, ""); std::shared_ptr ieWeights = nodes.size() > 1 ? nodes[1].dynamicCast()->node : nullptr; if (nodes.size() > 1) CV_Assert(ieWeights); // dynamic_cast should not fail const int inpCn = dims[1]; const int inpGroupCn = nodes.size() > 1 ? ieWeights->get_shape()[1] : blobs[0].size[1]; const int group = inpCn / inpGroupCn; std::vector kernel_shape; if (group != 1) { kernel_shape.push_back(group); } kernel_shape.push_back(numOutput / group); kernel_shape.push_back(inpCn / group); std::copy(kernel_size.begin(), kernel_size.end(), back_inserter(kernel_shape)); if (nodes.size() == 1) { ieWeights = std::make_shared(ngraph::element::f32, kernel_shape, blobs[0].data); if (fusedWeights) { if (weightsMat.isContinuous()) { ieWeights = std::make_shared(ngraph::element::f32, kernel_shape, weightsMat.data); } else { Mat newWeights; Mat cvWeights = weightsMat.colRange(0, blobs[0].total() / numOutput); cvWeights.copyTo(newWeights); ieWeights = std::make_shared(ngraph::element::f32, kernel_shape, newWeights.data); } } } else { auto shape = std::make_shared(ngraph::element::i64, ngraph::Shape{kernel_shape.size()}, std::vector(kernel_shape.begin(), kernel_shape.end())); ieWeights = std::make_shared(ieWeights, shape, true); } ngraph::op::PadType pad_type = ngraph::op::PadType::EXPLICIT; if (!padMode.empty()) pad_type = padMode == "VALID" ? ngraph::op::PadType::VALID : ngraph::op::PadType::SAME_UPPER; std::shared_ptr conv_node; if (group != 1) { conv_node = std::make_shared( ieInpNode, ieWeights, ngraph::Strides(strides), ngraph::CoordinateDiff(std::vector(pads_begin.begin(), pads_begin.end())), ngraph::CoordinateDiff(std::vector(pads_end.begin(), pads_end.end())), ngraph::Strides(dilations), pad_type); } else { conv_node = std::make_shared( ieInpNode, ieWeights, ngraph::Strides(strides), ngraph::CoordinateDiff(std::vector(pads_begin.begin(), pads_begin.end())), ngraph::CoordinateDiff(std::vector(pads_end.begin(), pads_end.end())), ngraph::Strides(dilations), pad_type); } if (hasBias() || fusedBias || nodes.size() == 3) { std::vector shape(conv_node->get_shape().size(), 1); shape[1] = conv_node->get_shape()[1]; std::shared_ptr bias; if (nodes.size() == 3) { auto bias_shape = std::make_shared(ngraph::element::i64, ngraph::Shape{shape.size()}, std::vector(shape.begin(), shape.end())); bias = std::make_shared(nodes[2].dynamicCast()->node, bias_shape, true); } else { bias = std::make_shared(ngraph::element::f32, ngraph::Shape(shape), biasvec.data()); } auto conv_bias = std::make_shared(conv_node, bias, ngraph::op::AutoBroadcastType::NUMPY); return Ptr(new InfEngineNgraphNode(conv_bias)); } return Ptr(new InfEngineNgraphNode(conv_node)); } #endif // HAVE_DNN_NGRAPH #ifdef HAVE_WEBNN virtual Ptr initWebnn(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE { CV_Assert(!blobs.empty()); CV_Assert_N(inputs.size() >= 1, nodes.size() >= 1); Ptr node = nodes[0].dynamicCast(); auto& webnnInpOperand = node->operand; auto& webnnGraphBuilder = node->net->builder; ml::Operand webnnWeights = nodes.size() > 1 ? nodes[1].dynamicCast()->operand : nullptr; if (nodes.size() > 1) CV_Assert(webnnWeights); const int inpCn = weightsMat.total()/(kernel_size[0]*kernel_size[1]*numOutput); const int group = groups; const int inpGroupCn = inpCn / group; std::vector kernel_shape; if (group != 1) { kernel_shape.push_back(group); } kernel_shape.push_back(numOutput / group); kernel_shape.push_back(inpGroupCn); std::copy(kernel_size.begin(), kernel_size.end(), back_inserter(kernel_shape)); if (nodes.size() == 1) { webnnWeights = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(blobs[0]), blobs[0].data, blobs[0].total()*blobs[0].elemSize(), ml::OperandType::Float32); if (fusedWeights) { if (weightsMat.isContinuous()) { webnnWeights = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(weightsMat), weightsMat.data, weightsMat.total()*weightsMat.elemSize(), ml::OperandType::Float32); } else { Mat newWeights; Mat cvWeights = weightsMat.colRange(0, blobs[0].total() / numOutput); cvWeights.copyTo(newWeights); webnnWeights = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(newWeights), newWeights.data, newWeights.total()*newWeights.elemSize(), ml::OperandType::Float32); } } } else { webnnWeights = webnnGraphBuilder.Reshape(webnnWeights, kernel_shape.data(), kernel_shape.size()); } ml::AutoPad pad_type = ml::AutoPad::Explicit; if (!padMode.empty()) pad_type = padMode == "VALID" ? ml::AutoPad::Explicit : ml::AutoPad::SameUpper; ml::Conv2dOptions options = {}; options.groups = group; options.autoPad = pad_type; std::vector Strides(strides.begin(), strides.end()); if (!Strides.empty()) { options.stridesCount = Strides.size(); options.strides = Strides.data(); } std::vector Padding; if (padMode.empty()) { Padding = {static_cast(pads_begin[0]), static_cast(pads_end[0]), static_cast(pads_begin[1]), static_cast(pads_end[1])}; } else if (padMode == "VALID") { Padding = {0, 0, 0, 0}; } if (!Padding.empty()) { options.paddingCount = Padding.size(); options.padding = Padding.data(); } std::vector Dilations(dilations.begin(), dilations.end()); if (!Dilations.empty()) { options.dilationsCount = Dilations.size(); options.dilations = Dilations.data(); } ml::Operand operand = webnnGraphBuilder.Conv2d(webnnInpOperand, webnnWeights, &options); // ml::Operand result = operand; if (hasBias() || fusedBias || nodes.size() == 3) { ml::Operand webnnBias = nullptr; if (nodes.size() == 3) { std::vector bias_shape = {1, numOutput, 1, 1}; webnnBias = webnnGraphBuilder.Reshape(nodes[2].dynamicCast()->operand, bias_shape.data(), bias_shape.size()); } else { webnnBias = webnn::BuildConstant(webnnGraphBuilder, {1, numOutput, 1, 1}, biasvec.data(), (numOutput) * sizeof(float), ml::OperandType::Float32); } operand = webnnGraphBuilder.Add(operand, webnnBias); } return Ptr(new WebnnBackendNode(operand)); } #endif // HAVE_WEBNN class ParallelConv : public cv::ParallelLoopBody { public: enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 }; const Mat* input_; const Mat* weights_; Mat* output_; int outShape[4]; // used only for conv2d std::vector kernel_size, pads_begin, pads_end, strides, dilations; int ngroups_, nstripes_; std::vector ofstab_; const std::vector* biasvec_; const std::vector* reluslope_; const ActivationLayer* activ_; bool is1x1_; bool useAVX; bool useAVX2; bool useAVX512; bool useRVV; int blk_size_cn; ParallelConv() : input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0), biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false), useAVX512(false), useRVV(false) , blk_size_cn(0) {} static void run( const Mat& input, Mat& output, const Mat& weights, const std::vector& biasvec, const std::vector& reluslope, const std::vector& kernel_size, const std::vector& strides, const std::vector& pads_begin, const std::vector& pads_end, const std::vector& dilations, const ActivationLayer* activ, int ngroups, int nstripes ) { size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies()); bool isConv1D = input.dims == 3; bool isConv2D = input.dims == 4; bool isConv3D = input.dims == 5; CV_CheckEQ(static_cast(kernel_size.size()), input.dims - 2, ""); CV_Assert_N(input.dims == output.dims, input.size[0] == output.size[0], weights.rows == output.size[1], weights.cols == (input.size[1]/ngroups)*karea, input.type() == output.type(), input.type() == weights.type(), input.type() == CV_32FC1, input.isContinuous(), output.isContinuous(), biasvec.size() == (size_t)output.size[1]+2); CV_Check(weights.step1(), weights.step1() % VEC_ALIGN == 0, ""); CV_CheckType(weights.type(), CV_32FC1, ""); ParallelConv p; p.input_ = &input; p.weights_ = &weights; p.output_ = &output; int max_ind = isConv1D? 3: 4; for( int i = 0; i < max_ind; i++ ) p.outShape[i] = output.size[i]; p.outShape[1] /= ngroups; p.kernel_size = kernel_size; p.strides = strides; p.dilations = dilations; p.pads_begin = pads_begin; p.pads_end = pads_end; p.ngroups_ = ngroups; p.nstripes_ = nstripes; int inpCnAll = input.size[1]; int depth = (input.dims == 5) ? input.size[2] : 1; int width = input.size[input.dims - 1]; int height = isConv1D? 1 : input.size[input.dims - 2]; int inpCn = inpCnAll / ngroups; p.is1x1_ = (isConv2D && kernel_size[0] == 1 && kernel_size[1] == 1 && pads_begin[0] == 0 && pads_begin[1] == 0) || (isConv1D && pads_begin[0] == 0 && kernel_size[0] == 1); p.useAVX = checkHardwareSupport(CPU_AVX) && isConv2D; p.useAVX2 = checkHardwareSupport(CPU_AVX2) && isConv2D; p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX && isConv2D; p.useRVV = checkHardwareSupport(CPU_RVV) && isConv2D; int kernel_d = isConv3D? kernel_size[0] : 1; int kernel_h = isConv1D? 1 : kernel_size[kernel_size.size() - 2]; int kernel_w = kernel_size.back(); int blk_size_cn0 = cvCeil(800./(kernel_w*kernel_h)); int ncn = 16; while (ncn*2 < blk_size_cn0 && ncn < inpCn) ncn *= 2; ncn = std::min(ncn, inpCn); p.blk_size_cn = ncn; int dil_d = isConv3D? dilations[0] : 1; int dil_h = isConv1D? 1 : dilations[dilations.size() - 2]; int dil_w = dilations.back(); p.ofstab_.resize(karea * ncn); int* ofstab = &p.ofstab_[0]; if (isConv1D) { for( int k = 0; k < ncn; k++ ) for( int k_c = 0; k_c < kernel_w; k_c++ ) ofstab[k*kernel_w + k_c] = k*width + k_c*dil_w; } else if (isConv2D) { for( int k = 0; k < ncn; k++ ) for( int k_r = 0; k_r < kernel_h; k_r++ ) for( int k_c = 0; k_c < kernel_w; k_c++ ) ofstab[(k*kernel_h + k_r)*kernel_w + k_c] = (k*height + k_r*dil_h)*width + k_c*dil_w; } else { for( int k = 0; k < ncn; k++ ) for (int k_d = 0; k_d < kernel_d; k_d++) for( int k_r = 0; k_r < kernel_h; k_r++ ) for( int k_c = 0; k_c < kernel_w; k_c++ ) ofstab[(k*kernel_d*kernel_h + k_d*kernel_h + k_r)*kernel_w + k_c] = (k*depth*height + k_d*dil_d*height + k_r*dil_h)*width + k_c*dil_w; } p.biasvec_ = &biasvec; p.reluslope_ = &reluslope; p.activ_ = p.reluslope_->empty() ? activ : 0; parallel_for_(Range(0, nstripes), p, nstripes); } virtual void operator ()(const Range &r0) const CV_OVERRIDE { const int valign = ConvolutionLayerImpl::VEC_ALIGN; int ngroups = ngroups_, batchSize = input_->size[0]*ngroups; bool isConv1D = input_->dims == 3; bool isConv2D = input_->dims == 4; bool isConv3D = input_->dims == 5; int outW = output_->size[output_->dims - 1]; int outH = isConv1D? 1 : output_->size[output_->dims - 2]; int outCn = output_->size[1]/ngroups; int depth = isConv3D? input_->size[2] : 1; int height = isConv1D? 1 : input_->size[input_->dims - 2]; int width = input_->size[input_->dims - 1]; int inpCn = input_->size[1]/ngroups; const int nstripes = nstripes_; int kernel_d = isConv3D? kernel_size[0] : 1; int kernel_h = isConv1D? 1 : kernel_size[kernel_size.size() - 2]; int kernel_w = kernel_size.back(); int karea = kernel_w*kernel_h*kernel_d; int pad_d = isConv3D? pads_begin[0] : 0; int pad_t = isConv1D? 0 : pads_begin[pads_begin.size() - 2]; int pad_l = pads_begin.back(); int stride_d = isConv3D? strides[0] : 0; int stride_h = isConv1D? 0 : strides[strides.size() - 2]; int stride_w = strides.back(); int dilation_d = isConv3D? dilations[0] : 1; int dilation_h = isConv1D? 1 : dilations[dilations.size() - 2]; int dilation_w = dilations.back(); int i, j, k, d; int inpPlaneSize = (int)input_->total(2); int outPlaneSize = (int)output_->total(2); bool is1x1 = is1x1_; int stripesPerSample; int stripeSize; Range r = r0; bool depthWiseConvolution = !is1x1 && isConv2D && ngroups > 1 && inpCn == 1 && outCn == 1 && kernel_d == 1 && dilation_d == 1 && stride_d == 0 && pad_d == 0 && width >= 16 + dilation_w*(kernel_w - 1); // for now only 3x3 depth-wise convolutions are supported depthWiseConvolution = depthWiseConvolution && kernel_w == 3 && kernel_h == 3 && // computing at most 1 pixel from each side can involve padding max(stride_w, dilation_w) >= pad_l && max(stride_h, dilation_h) >= pad_t && pad_l <= 1 && pad_t <= 1; if( !depthWiseConvolution && nstripes >= batchSize*2 ) { stripesPerSample = nstripes/batchSize; stripeSize = (int)alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign); stripeSize = std::min(stripeSize, outPlaneSize); } else { stripesPerSample = 1; int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1); r.start *= samplesPerStripe; r.end *= samplesPerStripe; stripeSize = outPlaneSize; } const float* data_inp0_ = input_->ptr(); const int* ofstab = &ofstab_[0]; const float* wptr_orig_ = weights_->ptr(); size_t wstep = weights_->step1(); const float* biasptr_ = &biasvec_->at(0); const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0); float* data_out0_ = output_->ptr(); AutoBuffer rowbuf0_; float* rowbuf0 = 0; bool use_rowbuf = !depthWiseConvolution; int blk_size = depthWiseConvolution ? outPlaneSize : min((int)BLK_SIZE, stripeSize); // im2row buffer is not used for depth-wise convolution if(use_rowbuf) { size_t rowbufsz = alignSize(karea*blk_size_cn, valign)*min((int)BLK_SIZE, blk_size); //printf("karea=%d, blk_size_cn=%d, rowbufsz=%d, stripeSize=%d\n", karea, blk_size_cn, (int)rowbufsz, stripeSize); rowbuf0_.allocate(rowbufsz + valign); rowbuf0 = alignPtr(rowbuf0_.data(), (int)(valign*sizeof(float))); // we clear the buffer once; ultimately, it lets us to avoid // tail processing after running the unrolled/vectorized loop. // the main idea is to make sure that the tail (a.k.a. padding) of each row // (i.e. the elements with indices between vsz=karea*ncn and vsz_a) // does not contain NaNs or Infs. Because the padding in the weights // matrix is explicitly initialized with 0's, we handle all other // cases nicely, i.e. we can skip expliciting re-initialization // of the padding - we just retain elements from the previous iteration // of the loop over channels (cn0). memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) ); } for( int stripe = r.start; stripe < r.end; stripe++ ) { int subsampleIdx = stripe/stripesPerSample; if( subsampleIdx >= batchSize ) break; int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize); int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize); const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn; float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn; int startOutCn = (subsampleIdx % ngroups)*outCn; const float* wptr_orig = wptr_orig_ + wstep*startOutCn; const float* biasptr = biasptr_ + startOutCn; for( int cn0 = 0; cn0 < inpCn; cn0 += blk_size_cn ) { int cn1 = std::min(cn0 + blk_size_cn, inpCn); int ncn = cn1 - cn0, vsz = karea*ncn; int vsz_a = (int)alignSize(vsz, valign); const float* wptr = wptr_orig + cn0*karea; // we apply [Channels][P]ReLU (if any) during the final pass only. const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0; for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += blk_size ) { int ofs, ofs1 = std::min(ofs0 + blk_size, stripeEnd); int bsz = ofs1 - ofs0; int out_d = ofs0 / (outH * outW); int out_i = (ofs0 - out_d * outH * outW) / outW; int out_j = ofs0 % outW; if (depthWiseConvolution) { CV_Assert(out_i == 0 && out_j == 0); int in_d = out_d * stride_d - pad_d; const float* inptr_ = data_inp0 + (cn0*depth*height + in_d*height)*width; float* outptr_ = data_out0 + ofs0; #if CV_TRY_AVX2 if(useAVX2) opt_AVX2::fastDepthwiseConv(wptr, kernel_h, kernel_w, stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l, biasptr, relu, inptr_, height, width, outptr_, out_d, outH, outW); else #endif #if CV_TRY_AVX if(useAVX) opt_AVX::fastDepthwiseConv(wptr, kernel_h, kernel_w, stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l, biasptr, relu, inptr_, height, width, outptr_, out_d, outH, outW); else #endif #if CV_TRY_RVV if(useRVV) opt_RVV::fastDepthwiseConv(wptr, kernel_h, kernel_w, stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l, biasptr, relu, inptr_, height, width, outptr_, out_d, outH, outW); else #endif { const float w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2], w10 = wptr[3], w11 = wptr[4], w12 = wptr[5], w20_ = wptr[6], w21_ = wptr[7], w22_ = wptr[8]; int outW1 = min(outW, (width - dilation_w*(kernel_w - 1) + pad_l)/stride_w); float relu_coeff = relu ? relu[out_d] : 1.f, bias = biasptr[out_d]; for (int out_i = 0; out_i < outH; out_i++) { int in_i = out_i * stride_h - pad_t, out_j = 0; const float* imgptr0 = inptr_ + in_i*width; const float* imgptr1 = imgptr0 + dilation_h*width; const float* imgptr2 = imgptr0 + (dilation_h*2)*width; float out, w00 = w00_, w01 = w01_, w02 = w02_; float w20 = w20_, w21 = w21_, w22 = w22_; if (in_i < 0) { w00 = w01 = w02 = 0.f; imgptr0 = imgptr1; } else if (in_i + dilation_h*(kernel_h-1) >= height) { w20 = w21 = w22 = 0.f; imgptr2 = imgptr1; } float* outptr = outptr_ + out_i*outW; if (pad_l > 0) { out = imgptr0[0]*w01 + imgptr0[dilation_w]*w02 + imgptr1[0]*w11 + imgptr1[dilation_w]*w12 + imgptr2[0]*w21 + imgptr2[dilation_w]*w22 + bias; if (relu) out = out > 0.f ? out : out*relu_coeff; outptr[0] = out; out_j = 1; } #if CV_SIMD // maybe with AVX or AVX512 strided depthwise convolution // can be accelerated with vector code, but with 4xfloat vectors // it's hardly the case if( stride_w == 1 ) { const int VECSZ = v_float32::nlanes; const int out_delta = VECSZ/stride_w; v_float32 vw00 = vx_setall_f32(w00), vw01 = vx_setall_f32(w01), vw02 = vx_setall_f32(w02), vw10 = vx_setall_f32(w10), vw11 = vx_setall_f32(w11), vw12 = vx_setall_f32(w12), vw20 = vx_setall_f32(w20), vw21 = vx_setall_f32(w21), vw22 = vx_setall_f32(w22); v_float32 z = vx_setzero_f32(), vbias = vx_setall_f32(bias), vrc = vx_setall_f32(relu_coeff); for( ; out_j < outW1; out_j += out_delta ) { if (out_j + out_delta > outW1) { if (out_j <= pad_l) break; out_j = outW1 - out_delta; } int in_j = out_j * stride_w - pad_l; v_float32 v00 = vx_load(imgptr0 + in_j), v01 = vx_load(imgptr0 + in_j + dilation_w), v02 = vx_load(imgptr0 + in_j + dilation_w*2), v10 = vx_load(imgptr1 + in_j), v11 = vx_load(imgptr1 + in_j + dilation_w), v12 = vx_load(imgptr1 + in_j + dilation_w*2), v20 = vx_load(imgptr2 + in_j), v21 = vx_load(imgptr2 + in_j + dilation_w), v22 = vx_load(imgptr2 + in_j + dilation_w*2); v_float32 vout = v00*vw00 + v01*vw01 + v02*vw02 + v10*vw10 + v11*vw11 + v12*vw12 + v20*vw20 + v21*vw21 + v22*vw22 + vbias; if (relu) vout = v_select(vout > z, vout, vout*vrc); v_store(outptr + out_j, vout); } } #endif for (; out_j < outW1; out_j++) { int in_j = out_j * stride_w - pad_l; out = imgptr0[in_j]*w00 + imgptr0[in_j + dilation_w]*w01 + imgptr0[in_j + dilation_w*2]*w02 + imgptr1[in_j]*w10 + imgptr1[in_j + dilation_w]*w11 + imgptr1[in_j + dilation_w*2]*w12 + imgptr2[in_j]*w20 + imgptr2[in_j + dilation_w]*w21 + imgptr2[in_j + dilation_w*2]*w22 + bias; if (relu) out = out > 0.f ? out : out*relu_coeff; outptr[out_j] = out; } for (; out_j < outW; out_j++ ) { int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2; float s0 = 1.f, s1 = 1.f, s2 = 1.f; if (in_j0 >= width) { in_j0 = 0; s0 = 0.f; } if (in_j1 >= width) { in_j1 = 0; s1 = 0.f; } if (in_j2 >= width) { in_j2 = 0; s2 = 0.f; } out = imgptr0[in_j0]*w00*s0 + imgptr0[in_j1]*w01*s1 + imgptr0[in_j2]*w02*s2 + imgptr1[in_j0]*w10*s0 + imgptr1[in_j1]*w11*s1 + imgptr1[in_j2]*w12*s2 + imgptr2[in_j0]*w20*s0 + imgptr2[in_j1]*w21*s1 + imgptr2[in_j2]*w22*s2 + bias; if (relu) out = out > 0.f ? out : out*relu_coeff; outptr[out_j] = out; } } } continue; } // do im2row for a part of input tensor float* rowbuf = rowbuf0; if (isConv1D) { for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i ) { int delta = std::min(ofs1 - ofs, outW - out_j); int out_j1 = out_j + delta; int in_j = out_j * stride_w - pad_l; const float* imgptr = data_inp0 + cn0*width + in_j; ofs += delta; // do im2row for a part of input tensor if( is1x1 ) { for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w ) { for( k = 0; k < vsz; k++ ) rowbuf[k] = imgptr[k*inpPlaneSize]; } } else { for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w ) { // this condition should be true for most of the tensor elements, i.e. // most of the time the kernel aperture is inside the tensor X-Y plane. if( out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w ) { for( k = 0; k < vsz; k++ ) { int k1 = ofstab[k]; float v0 = imgptr[k1]; float v1 = imgptr[k1 + stride_w]; rowbuf[k] = v0; rowbuf[k+vsz_a] = v1; } out_j++; rowbuf += vsz_a; imgptr += stride_w; in_j += stride_w; } else { int i0 = std::max(0, (-in_j + dilation_w-1)/dilation_w); int i1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w); // here some non-continuous sub-row of the row will not be // filled from the tensor; we need to make sure that the uncovered // elements are explicitly set to 0's. the easiest way is to // set all the elements to 0's before the loop. memset(rowbuf, 0, vsz*sizeof(rowbuf[0])); for( k = 0; k < ncn; k++ ) { for( i = i0; i < i1; i++ ) { int imgofs = k*width + i*dilation_w; rowbuf[k*kernel_w + i] = imgptr[imgofs]; } } } } } } } else if (isConv2D) { if( is1x1 && stride_w == 1 && stride_h == 1 ) { const float* imgptr = data_inp0 + (cn0*height + out_i)*width + out_j; for( int j = 0; j < bsz; j++, rowbuf += vsz_a ) { if( j + 4 <= bsz ) { k = 0; #if CV_SIMD128 for( ; k <= vsz - 4; k += 4 ) { const float* inp = imgptr + j + k*inpPlaneSize; v_float32x4 p0 = v_load(inp), p1 = v_load(inp + inpPlaneSize); v_float32x4 p2 = v_load(inp + inpPlaneSize*2), p3 = v_load(inp + inpPlaneSize*3); v_float32x4 r0, r1, r2, r3; v_transpose4x4(p0, p1, p2, p3, r0, r1, r2, r3); v_store(rowbuf + k, r0); v_store(rowbuf + k + vsz_a, r1); v_store(rowbuf + k + vsz_a*2, r2); v_store(rowbuf + k + vsz_a*3, r3); } #endif for( ; k < vsz; k++ ) { const float* inp = imgptr + j + k*inpPlaneSize; float v0 = inp[0], v1 = inp[1], v2 = inp[2], v3 = inp[3]; rowbuf[k] = v0; rowbuf[k + vsz_a] = v1; rowbuf[k + vsz_a*2] = v2; rowbuf[k + vsz_a*3] = v3; } j += 3; rowbuf += vsz_a*3; } else { for( k = 0; k < vsz; k++ ) { rowbuf[k] = imgptr[j + k*inpPlaneSize]; } } } } else for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i ) { int delta = std::min(ofs1 - ofs, outW - out_j); int out_j1 = out_j + delta; int in_i = out_i * stride_h - pad_t; int in_j = out_j * stride_w - pad_l; const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j; ofs += delta; // do im2row for a part of input tensor if( is1x1 ) { for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w ) { for( k = 0; k < vsz; k++ ) rowbuf[k] = imgptr[k*inpPlaneSize]; } } else { bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h; int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h); int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h); for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w ) { // this condition should be true for most of the tensor elements, i.e. // most of the time the kernel aperture is inside the tensor X-Y plane. if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w ) { for( k = 0; k < vsz; k++ ) { int k1 = ofstab[k]; float v0 = imgptr[k1]; float v1 = imgptr[k1 + stride_w]; rowbuf[k] = v0; rowbuf[k+vsz_a] = v1; } out_j++; rowbuf += vsz_a; imgptr += stride_w; in_j += stride_w; } else { int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w); int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w); // here some non-continuous sub-row of the row will not be // filled from the tensor; we need to make sure that the uncovered // elements are explicitly set to 0's. the easiest way is to // set all the elements to 0's before the loop. memset(rowbuf, 0, vsz*sizeof(rowbuf[0])); for( k = 0; k < ncn; k++ ) { for( i = i0; i < i1; i++ ) { for( j = j0; j < j1; j++ ) { int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w; rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs]; } } } } } } } } else { for( ofs = ofs0; ofs < ofs1; out_d += (out_i + 1) / outH, out_i = (out_i + 1) % outH, out_j = 0 ) { int delta = std::min(ofs1 - ofs, outW - out_j); int out_j1 = out_j + delta; int in_d = out_d * stride_d - pad_d; int in_i = out_i * stride_h - pad_t; int in_j = out_j * stride_w - pad_l; const float* imgptr = data_inp0 + (cn0*depth*height + in_d*height + in_i)*width + in_j; ofs += delta; int d0 = std::max(0, (-in_d + dilation_d - 1) / dilation_d); int d1 = std::min(kernel_d, (depth - in_d + dilation_d - 1) / dilation_d); int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h); int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h); for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w ) { int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w); int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w); // here some non-continuous sub-row of the row will not be // filled from the tensor; we need to make sure that the uncovered // elements are explicitly set to 0's. the easiest way is to // set all the elements to 0's before the loop. memset(rowbuf, 0, vsz*sizeof(rowbuf[0])); for( k = 0; k < ncn; k++ ) { for ( d = d0; d < d1; d++) { for( i = i0; i < i1; i++ ) { for( j = j0; j < j1; j++ ) { int imgofs = k*(depth*width*height) + d*dilation_d*width*height + i*(dilation_h*width) + j*dilation_w; rowbuf[(k*kernel_d*kernel_h + d*kernel_h + i)*kernel_w + j] = imgptr[imgofs]; } } } } } } } // now compute dot product of the weights // and im2row-transformed part of the tensor #if CV_TRY_AVX512_SKX /* AVX512 convolution requires an alignment of 16, and ROI is only there for larger vector sizes */ if(useAVX512) opt_AVX512_SKX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, relu, cn0 == 0); else #endif #if CV_TRY_AVX2 if(useAVX2) opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, relu, cn0 == 0); else #endif #if CV_TRY_AVX if(useAVX) opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, relu, cn0 == 0); else #endif #if CV_TRY_RVV if(useRVV) opt_RVV::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, outShape, bsz, vsz, vsz_a, relu, cn0 == 0); else #endif for( int i = 0; i < outCn; i += 2 ) { const float* wptr0 = wptr + i*wstep; const float* wptr1 = wptr0 + wstep; float* outptr0 = data_out0 + ofs0 + i*outPlaneSize; float* outptr1 = outptr0 + outPlaneSize; float bias0 = biasptr[i], bias1 = biasptr[i+1]; float r0 = 1.f, r1 = 1.f; if( i+1 >= outCn ) { wptr1 = wptr0; outptr1 = outptr0; bias1 = bias0; } if( relu ) { r0 = relu[i]; r1 = relu[i+1]; if( i+1 >= outCn ) r1 = r0; } int j = 0; #if CV_SIMD128 v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32(); for( ; j <= bsz - 4; j += 4 ) { const float* rptr = rowbuf0 + j*vsz_a; v_float32x4 s0, s1; if( cn0 == 0 ) { s0 = v_setall_f32(bias0); s1 = v_setall_f32(bias1); } else { s0 = v_load(outptr0 + j); s1 = v_load(outptr1 + j); } v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(), vs02 = v_setzero_f32(), vs03 = v_setzero_f32(), vs10 = v_setzero_f32(), vs11 = v_setzero_f32(), vs12 = v_setzero_f32(), vs13 = v_setzero_f32(); for( k = 0; k < vsz; k += 4, rptr += 4 ) { v_float32x4 w0 = v_load_aligned(wptr0 + k); v_float32x4 w1 = v_load_aligned(wptr1 + k); v_float32x4 r0 = v_load_aligned(rptr); v_float32x4 r1 = v_load_aligned(rptr + vsz_a); v_float32x4 r2 = v_load_aligned(rptr + vsz_a*2); v_float32x4 r3 = v_load_aligned(rptr + vsz_a*3); vs00 = v_fma(w0, r0, vs00); vs01 = v_fma(w0, r1, vs01); vs02 = v_fma(w0, r2, vs02); vs03 = v_fma(w0, r3, vs03); vs10 = v_fma(w1, r0, vs10); vs11 = v_fma(w1, r1, vs11); vs12 = v_fma(w1, r2, vs12); vs13 = v_fma(w1, r3, vs13); } s0 += v_reduce_sum4(vs00, vs01, vs02, vs03); s1 += v_reduce_sum4(vs10, vs11, vs12, vs13); if( relu ) { s0 = v_select(s0 > z, s0, s0*vr0); s1 = v_select(s1 > z, s1, s1*vr1); } v_store(outptr0 + j, s0); v_store(outptr1 + j, s1); } #endif for( ; j < bsz; j++ ) { const float* rptr = rowbuf0 + j*vsz_a; float s00, s10; if( cn0 == 0 ) { s00 = bias0; s10 = bias1; } else { s00 = outptr0[j]; s10 = outptr1[j]; } for( k = 0; k < vsz; k++ ) { float r0 = rptr[k]; s00 += wptr0[k]*r0; s10 += wptr1[k]*r0; } if( relu ) { s00 = s00 > 0.f ? s00 : s00*r0; s10 = s10 > 0.f ? s10 : s10*r1; } outptr0[j] = s00; outptr1[j] = s10; } } } } if( activ_ ) activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart, (int)(stripeEnd - stripeStart), outPlaneSize, startOutCn, startOutCn + outCn); } } }; #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) { if (kernel_size.size() != 2) { // no OpenCL optimizations, see .supportedBacked() return false; } std::vector inputs; std::vector outputs; bool use_half = (inps.depth() == CV_16S); inps.getUMatVector(inputs); outs.getUMatVector(outputs); CV_Assert(outputs.size() == 1); for (int i = 0; i < inputs.size(); ++i) CV_Assert(inputs[i].u != outputs[0].u); if (blobs.empty()) { size_t n = inputs.size() - 1; umat_blobs.resize(n); for (size_t i = 0; i < n; i++) { inputs[i + 1].copyTo(umat_blobs[i]); } inputs.resize(1); } if (umat_blobs.empty()) { size_t n = blobs.size(); umat_blobs.resize(n); for (size_t i = 0; i < n; i++) { if (use_half) convertFp16(blobs[i], umat_blobs[i]); else blobs[i].copyTo(umat_blobs[i]); } } if (convolutionOp.empty() || blobs.empty()) { OCL4DNNConvConfig config; config.in_shape = shape(inputs[0]); config.out_shape = shape(outputs[0]); config.kernel = kernel; config.pad = pad; config.stride = stride; config.dilation = dilation; if (inputs[0].dims != 4 && inputs[0].dims != umat_blobs[0].dims) { static bool bypassCheck = utils::getConfigurationParameterBool("OPENCV_OCL4DNN_CONVOLUTION_IGNORE_INPUT_DIMS_4_CHECK", false); if (!bypassCheck) { CV_LOG_ERROR(NULL, "DNN/OpenCL: Unsupported configuration: inputs[0].dims=" << inputs[0].dims << " umat_blobs[0].dims=" << umat_blobs[0].dims << ". Consider reporting complete reproducer to https://github.com/opencv/opencv/issues/20833." << " You can skip this check temporary through OPENCV_OCL4DNN_CONVOLUTION_IGNORE_INPUT_DIMS_4_CHECK=1" ); return false; } } config.group = inputs[0].size[1] / umat_blobs[0].size[1]; if (config.group < 1) // config.group == 0 causes div by zero in ocl4dnn code { CV_LOG_WARNING(NULL, "DNN/OpenCL: Unsupported config.group=" << config.group << ". Consider reporting complete reproducer to https://github.com/opencv/opencv/issues/20833" ); return false; } config.bias_term = umat_blobs.size() == 2; config.use_half = use_half; convolutionOp = Ptr >(new OCL4DNNConvSpatial(config)); } int outCn = umat_blobs[0].size[0]; reluslope.clear(); if( activ ) { Ptr activ_relu = activ.dynamicCast(); if( !activ_relu.empty() ) { reluslope.assign(outCn+2, activ_relu->negativeSlope); activType = OCL4DNN_CONV_FUSED_ACTIV_RELU; } Ptr activ_relu6 = activ.dynamicCast(); if( !activ_relu6.empty() ) { reluslope.resize(2); reluslope[0] = activ_relu6->minValue; reluslope[1] = activ_relu6->maxValue; activType = OCL4DNN_CONV_FUSED_ACTIV_RELU6; } Ptr activ_chprelu = activ.dynamicCast(); if( !activ_chprelu.empty() ) { const Mat& m = activ_chprelu->blobs[0]; CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn); const float* mdata = m.ptr(); reluslope.resize(outCn+2); std::copy(mdata, mdata + outCn, reluslope.begin()); reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1]; activType = OCL4DNN_CONV_FUSED_ACTIV_PRELU; } } if (fusedWeights) { if (use_half) convertFp16(weightsMat, umat_blobs[0]); else weightsMat.copyTo(umat_blobs[0]); fusedWeights = false; } if (fusedBias) { if ( umat_blobs.size() < 2 ) umat_blobs.resize(2); if (use_half) convertFp16(Mat(biasvec, true), umat_blobs[1]); else Mat(biasvec, true).copyTo(umat_blobs[1]); convolutionOp->setBias(true); fusedBias = false; } if ( newActiv ) { if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU ) { CV_Assert(!reluslope.empty()); convolutionOp->setActivReLU(true, reluslope[0]); } else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_PRELU) { CV_Assert(!reluslope.empty()); convolutionOp->setActivPReLU(true, reluslope); } else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_POWER) { convolutionOp->setActivPower(true, power); } else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_TANH) { convolutionOp->setActivTanh(true); } else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU6) { convolutionOp->setActivReLU6(true, reluslope[0], reluslope[1]); } else { convolutionOp->setActivReLU(false, 0); convolutionOp->setActivPReLU(false, reluslope); convolutionOp->setActivPower(false, 1.f); convolutionOp->setActivTanh(false); convolutionOp->setActivReLU6(false, 0, 0); } newActiv = false; } UMat& inpMat = inputs[0]; UMat& outMat = outputs[0]; int batch_size = inpMat.size[0]; return convolutionOp->Forward(inpMat, inputs.size() == 2 ? inputs[1] : UMat(), umat_blobs[0], umat_blobs.size() > 1 ? umat_blobs[1] : UMat(), outMat, batch_size); } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), forward_ocl(inputs_arr, outputs_arr, internals_arr)) if (inputs_arr.depth() == CV_16S) { forward_fallback(inputs_arr, outputs_arr, internals_arr); return; } std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); int outCn = blobs.empty() ? inputs[1].size[0] : blobs[0].size[0]; // Need to align non-const blobs if (blobs.empty()) { Mat wm = inputs[1].reshape(1, outCn); if (wm.data != weightsMat.data) { int newcols = (int)alignSize(wm.step1(), VEC_ALIGN); Mat wm_buffer = Mat(numOutput, newcols, wm.type()); Mat wm_padding = wm_buffer.colRange(wm.cols, newcols); wm_padding.setTo(Scalar::all(0.)); weightsMat = wm_buffer.colRange(0, wm.cols); wm.copyTo((const Mat&)weightsMat); if (inputs.size() > 2) { Mat biasMat = inputs[2].reshape(1, outCn); biasMat.col(0).copyTo(biasvec); } biasvec.resize(outCn + 2, 0); } } /*if (inputs[0].dims > 3) { printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n", name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], inputs[0].size[3], kernel.width, kernel.height, pad.width, pad.height, stride.width, stride.height, dilation.width, dilation.height); } else { printf("conv %s: input (%d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n", name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], kernel.width, kernel.height, pad.width, pad.height, stride.width, stride.height, dilation.width, dilation.height); }*/ int inpGroupCn = blobs.empty() ? inputs[1].size[1] : blobs[0].size[1]; CV_Assert_N(inputs.size() >= (size_t)1, inputs[0].size[1] % inpGroupCn == 0, outputs.size() == 1, inputs[0].data != outputs[0].data); int ngroups = inputs[0].size[1] / inpGroupCn; CV_Assert(outputs[0].size[1] % ngroups == 0); reluslope.clear(); if( activ ) { Ptr activ_relu = activ.dynamicCast(); if( !activ_relu.empty() ) { reluslope.assign(outCn+2, activ_relu->negativeSlope); } Ptr activ_chprelu = activ.dynamicCast(); if( !activ_chprelu.empty() ) { const Mat& m = activ_chprelu->blobs[0]; CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn); const float* mdata = m.ptr(); reluslope.resize(outCn+2); std::copy(mdata, mdata + outCn, reluslope.begin()); reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1]; } } #ifdef HAVE_TENGINE bool tengine_ret = false; ; std::vector teng_in, teng_out; inputs_arr.getMatVector(teng_in); outputs_arr.getMatVector(teng_out); int inch = teng_in[0].size[1]; // inch int in_h = teng_in[0].size[2]; // in_h int in_w = teng_in[0].size[3]; // in_w int out_b = teng_out[0].size[0]; // out batch size int outch = teng_out[0].size[1]; // outch int out_h = teng_out[0].size[2]; // out_h int out_w = teng_out[0].size[3]; // out_w float *input_ = teng_in[0].ptr(); float *output_ = teng_out[0].ptr(); float *kernel_ = weightsMat.ptr(); float *teg_bias = &biasvec[0]; int nstripes = std::max(getNumThreads(), 1); /* tengine_init will run when first time. */ if(NULL == tengine_graph) { tengine_graph = tengine_init(name.c_str(), input_, inch, ngroups, in_h, in_w, output_, out_b, outch, out_h, out_w, kernel_, kernel_size.size(), kernel.height, kernel.width, teg_bias, stride.height, stride.width, pad.height, pad.width, dilation.height, dilation.width, weightsMat.step1(), padMode, tengine_graph, nstripes); /*printf("Init(%s): input=%p(%d %d %d %d ),output=%p(%d %d %d %d ),kernel=%p(%ld %d %d ), bias=%p ," "stride(%d %d), pad(%d %d), dilation(%d %d) ,weightsMat=%ld, padMode=%s ,tengine_graph = %p \n", name.c_str(),input_, inch, ngroups, in_h, in_w, output_, out_b, outch, out_h, out_w, kernel_, kernel_size.size(), kernel.height, kernel.width, teg_bias, stride.height, stride.width, pad.height, pad.width, dilation.height, dilation.width, weightsMat.step1(), padMode.c_str() ,tengine_graph);*/ } if(NULL != tengine_graph) { tengine_ret = tengine_forward(tengine_graph); } /* activation */ if((true == tengine_ret) && activ ) { int out_cstep = out_h * out_w; // out_cstep ActivationLayer* activ_ = activ.get(); activ_->forwardSlice(output_, output_, out_cstep, out_cstep, 0, outch); } if(false == tengine_ret) #endif { int nstripes = std::max(getNumThreads(), 1); ParallelConv::run(inputs[0], outputs[0], weightsMat, biasvec, reluslope, kernel_size, strides, pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes); } } #ifdef HAVE_CUDA Ptr initCUDA( void *context_, const std::vector>& inputs, const std::vector>& outputs ) override { auto context = reinterpret_cast(context_); CV_Assert(inputs.size() == 1 || inputs.size() == 2); auto input_wrapper = inputs[0].dynamicCast(); auto input_shape = input_wrapper->getShape(); CV_Assert(outputs.size() == 1); auto output_wrapper = outputs[0].dynamicCast(); auto output_shape = output_wrapper->getShape(); CV_Assert(!blobs.empty()); const auto output_feature_maps = blobs[0].size[0]; const auto input_feature_maps = input_shape[1]; const auto input_feature_maps_per_group = blobs[0].size[1]; const auto groups = input_feature_maps / input_feature_maps_per_group; ConvolutionConfiguration config; if (input_shape.size() == 3) { // Conv1D // We add an extra dim for input and output tensors, because CuDNN doesn't support convolution with 3D tensors input_shape.insert(std::end(input_shape) - 1, 1); output_shape.insert(std::end(output_shape) - 1, 1); // Do the similar thing for the other parameters pads_begin.insert(std::begin(pads_begin), 0); pads_end.insert(std::begin(pads_end), 0); strides.insert(std::begin(strides), 1); dilations.insert(std::begin(dilations), 1); kernel_size.insert(std::begin(kernel_size), 1); } config.kernel_size.assign(std::begin(kernel_size), std::end(kernel_size)); config.dilations.assign(std::begin(dilations), std::end(dilations)); config.strides.assign(std::begin(strides), std::end(strides)); if (padMode.empty()) { config.padMode = ConvolutionConfiguration::PaddingMode::MANUAL; config.pads_begin.assign(std::begin(pads_begin), std::end(pads_begin)); config.pads_end.assign(std::begin(pads_end), std::end(pads_end)); } else if (padMode == "VALID") { config.padMode = ConvolutionConfiguration::PaddingMode::VALID; } else if (padMode == "SAME") { config.padMode = ConvolutionConfiguration::PaddingMode::SAME; } else { CV_Error(Error::StsNotImplemented, padMode + " padding mode not supported by ConvolutionLayer"); } config.input_shape.assign(std::begin(input_shape), std::end(input_shape)); config.output_shape.assign(std::begin(output_shape), std::end(output_shape)); config.groups = groups; config.fusion_mode = cudaFusionMode; config.activation_type = cudaActType; config.relu_negative_slope = cuda_relu_slope; config.crelu_floor = cuda_crelu_floor; config.crelu_ceil = cuda_crelu_ceil; config.power_exp = cuda_power_exp; config.power_scale = cuda_power_scale; config.power_shift = cuda_power_shift; Mat filtersMat = fusedWeights ? weightsMat : blobs[0]; Mat biasMat = (hasBias() || fusedBias) ? Mat(output_feature_maps, 1, CV_32F, biasvec.data()) : Mat(); if (countNonZero(biasMat) == 0) biasMat = Mat(); return make_cuda_node( preferableTarget, std::move(context->stream), std::move(context->cudnn_handle), config, filtersMat, biasMat); } #endif virtual bool tryQuantize(const std::vector > &scales, const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE { // References - https://arxiv.org/pdf/1712.05877.pdf // Quantized convolution with variable weights is not supported. if (blobs.empty()) return false; float inputScale = scales[0][0], outputScale = scales[1][0]; int inputZp = zeropoints[0][0]; params.set("input_zeropoint", inputZp); params.set("input_scale", inputScale); Mat weightsQuantized(weightsMat.rows, weightsMat.cols, CV_8S); Mat biasQuantized(1, numOutput, CV_32S); Mat outputMultiplier(1, numOutput, CV_32F); double realMin, realMax, weightsScale; for( int i = 0; i < numOutput; i++ ) { // Quantize weights cv::minMaxIdx(weightsMat.row(i), &realMin, &realMax); realMin = std::min(realMin, 0.0); realMax = std::max(realMax, 0.0); weightsScale = (realMax == realMin) ? 1.0 : std::max(-realMin, realMax)/127; weightsMat.row(i).convertTo(weightsQuantized.row(i), CV_8S, 1.f/weightsScale); // Quantize biases float biasScale = inputScale * weightsScale; biasQuantized.at(i) = (int)std::round(biasvec[i]/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]); // Store multiplier outputMultiplier.at(i) = biasScale / outputScale; } params.blobs.clear(); params.blobs.push_back(weightsQuantized.reshape(1, shape(blobs[0]))); params.blobs.push_back(biasQuantized); params.blobs.push_back(outputMultiplier); return true; } virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const CV_OVERRIDE { CV_Assert(inputs.size() == outputs.size() || inputs.size() == outputs.size() + blobs.size()); int64 flops = 0; int karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies()); for (int i = 0; i < outputs.size(); i++) { flops += total(outputs[i])*(CV_BIG_INT(2)*karea*inputs[i][1] + 1); } return flops; } }; class DeConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl { public: Mat weightsMat, biasesMat; UMat umat_weights; UMat umat_biases; DeConvolutionLayerImpl(const LayerParams& params) : BaseConvolutionLayerImpl(params) {} MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE { int dims = inpShape.size(); int inpCn = inpShape[1]; int inpD = dims == 5 ? inpShape[2] : 1; int inpH = inpShape[dims - 2]; int inpW = inpShape.back(); int outCn = outShape[1]; int ngroups = inpCn / blobs[0].size[0]; int outGroupCn = outCn / ngroups; int ksize = outGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies()); return shape(ksize, inpD * inpH * inpW); } virtual bool supportBackend(int backendId) CV_OVERRIDE { if (backendId == DNN_BACKEND_CUDA) { /* only deconvolution 2d and 3d supported */ if (kernel_size.size() == 2 || kernel_size.size() == 3) return true; return false; } #ifdef HAVE_INF_ENGINE const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW or IODHW layout const int group = numOutput / outGroupCn; if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { return group == 1; } #endif // HAVE_INF_ENGINE { return backendId == DNN_BACKEND_CUDA || (kernel_size.size() == 2 && (backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE)); } } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { CV_Assert(!hasBias() || blobs[1].total() == (size_t)numOutput); CV_Assert(inputs.size() != 0); int outCn = numOutput; std::vector outShape; outShape.push_back(inputs[0][0]); // batch outShape.push_back(outCn); if (padMode.empty()) { for (int i = 0; i < kernel_size.size(); i++) outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] - pads_begin[i] - pads_end[i] + adjust_pads[i]); } else if (padMode == "VALID") { for (int i = 0; i < kernel_size.size(); i++) outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] + adjust_pads[i]); } else if (padMode == "SAME") { for (int i = 0; i < kernel_size.size(); i++) outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + 1 + adjust_pads[i]); } else CV_Error(Error::StsError, "Unsupported padding mode " + padMode); CV_Assert(outCn % blobs[0].size[1] == 0); int ngroups = outCn / blobs[0].size[1]; int inpCn = inputs[0][1]; CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0); CV_Assert(blobs[0].size[0] == inpCn); outputs.resize(1, outShape); if (!is1x1()) internals.push_back(computeColRowShape(inputs[0], outputs[0])); return false; } void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr); std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); std::vector inpShape; std::vector outShape; for (int i = 2; i < inputs[0].dims; i++) { inpShape.push_back(inputs[0].size[i]); outShape.push_back(outputs[0].size[i]); } getConvPoolPaddings(outShape, kernel_size, strides, padMode, pads_begin, pads_end); if (pads_begin.size() == 2) { for (int i = 0; i < pads_begin.size(); i++) { if (pads_begin[i] != pads_end[i]) CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in deconvolution layer"); } pad = Size(pads_begin[1], pads_begin[0]); } weightsMultipliers.assign(numOutput, 1.0); if (weightsMat.empty()) { transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat); biasesMat = hasBias() ? blobs[1].reshape(1, numOutput) : Mat::zeros(numOutput, 1, CV_32F); } } void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE { Mat w = w_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(w_.at(0))) : w_; Mat b = b_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(b_.at(0))) : b_; CV_Assert_N(!weightsMat.empty(), w.empty() || numOutput == w.total(), b.empty() || numOutput == b.total()); if (!w.empty()) { transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat); weightsMat = weightsMat.reshape(1, numOutput); for (int i = 0; i < numOutput; ++i) { double wi = w.at(i); weightsMultipliers[i] *= wi; cv::multiply(weightsMat.row(i), weightsMultipliers[i], weightsMat.row(i)); biasesMat.at(i) *= wi; } weightsMat = weightsMat.reshape(1, weightsMat.total() / blobs[0].size[0]); } if (!b.empty()) { cv::add(biasesMat, b.reshape(1, numOutput), biasesMat); } } class MatMulInvoker : public ParallelLoopBody { public: MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes) { a_ = &a; b_ = &b; c_ = &c; nstripes_ = nstripes; useAVX = checkHardwareSupport(CPU_AVX); useAVX2 = checkHardwareSupport(CPU_AVX2); useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX; useRVV = checkHardwareSupport(CPU_RVV); } void operator()(const Range& range_) const CV_OVERRIDE { int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16); Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols)); int mmax = a_->rows; int nmax = range.end - range.start; int kmax = a_->cols; int m, n, k; const float* aptr = a_->ptr(); const float* bptr = b_->ptr() + range.start; float* cptr = c_->ptr() + range.start; size_t astep = a_->step1(); size_t bstep = b_->step1(); size_t cstep = c_->step1(); #if CV_TRY_AVX512_SKX if( useAVX512 ) opt_AVX512_SKX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); else #endif #if CV_TRY_AVX2 if( useAVX2 ) opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); else #endif #if CV_TRY_AVX if( useAVX ) opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); else #endif #if CV_TRY_RVV if( useRVV ) { opt_RVV::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); } else #endif for( m = 0; m < mmax; m += 2 ) { float* dst0 = cptr + cstep*m; float* dst1 = cptr + cstep*std::min(m+1, mmax-1); const float* aptr0 = aptr + astep*m; const float* aptr1 = aptr + astep*std::min(m+1, mmax-1); for( n = 0; n < nmax; n++ ) { dst0[n] = 0.f; dst1[n] = 0.f; } for( k = 0; k < kmax; k += 4 ) { float alpha00 = aptr0[k]; float alpha01 = aptr1[k]; float alpha10 = 0.f, alpha11 = 0.f; float alpha20 = 0.f, alpha21 = 0.f; float alpha30 = 0.f, alpha31 = 0.f; const float* bptr0 = bptr + k*bstep; const float* bptr1 = bptr0; const float* bptr2 = bptr0; const float* bptr3 = bptr0; if( k+1 < kmax ) { alpha10 = aptr0[k+1]; alpha11 = aptr1[k+1]; bptr1 = bptr0 + bstep; if( k+2 < kmax ) { alpha20 = aptr0[k+2]; alpha21 = aptr1[k+2]; bptr2 = bptr1 + bstep; if( k+3 < kmax ) { alpha30 = aptr0[k+3]; alpha31 = aptr1[k+3]; bptr3 = bptr2 + bstep; } } } n = 0; #if CV_SIMD128 v_float32x4 a00 = v_setall_f32(alpha00); v_float32x4 a01 = v_setall_f32(alpha01); v_float32x4 a10 = v_setall_f32(alpha10); v_float32x4 a11 = v_setall_f32(alpha11); v_float32x4 a20 = v_setall_f32(alpha20); v_float32x4 a21 = v_setall_f32(alpha21); v_float32x4 a30 = v_setall_f32(alpha30); v_float32x4 a31 = v_setall_f32(alpha31); for( ; n <= nmax - 4; n += 4 ) { v_float32x4 d0 = v_load(dst0 + n); v_float32x4 d1 = v_load(dst1 + n); v_float32x4 b0 = v_load(bptr0 + n); v_float32x4 b1 = v_load(bptr1 + n); v_float32x4 b2 = v_load(bptr2 + n); v_float32x4 b3 = v_load(bptr3 + n); // TODO try to improve pipeline width d0 = v_fma(b0, a00, d0); d1 = v_fma(b0, a01, d1); d0 = v_fma(b1, a10, d0); d1 = v_fma(b1, a11, d1); d0 = v_fma(b2, a20, d0); d1 = v_fma(b2, a21, d1); d0 = v_fma(b3, a30, d0); d1 = v_fma(b3, a31, d1); v_store(dst0 + n, d0); v_store(dst1 + n, d1); } #endif for( ; n < nmax; n++ ) { float b0 = bptr0[n]; float b1 = bptr1[n]; float b2 = bptr2[n]; float b3 = bptr3[n]; float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3; float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3; dst0[n] = d0; dst1[n] = d1; } } } } const Mat *a_, *b_; Mat* c_; int nstripes_; bool useAVX; bool useAVX2; bool useAVX512; bool useRVV; }; class Col2ImInvoker : public cv::ParallelLoopBody { public: const float* data_col; const float* biasvec; int channels, height, width; int kernel_h, kernel_w; int pad_h, pad_w; int stride_h, stride_w; float* data_im; int height_col, width_col; int nstripes; bool is1x1; Col2ImInvoker() : data_col(0), biasvec(0), channels(0), height(0), width(0), kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0), height_col(0), width_col(0), nstripes(0), is1x1(0) {} static void run(const float* data_col, int channels, int height, int width, int kernel_h, int kernel_w, int pad_h, int pad_w, int stride_h, int stride_w, int height_col, int width_col, float* data_im, const float* biasvec, bool is1x1) { const int nstripes = getNumThreads(); Col2ImInvoker t; t.data_col = data_col; t.data_im = data_im; t.channels = channels; t.height = height; t.width = width; t.kernel_h = kernel_h; t.kernel_w = kernel_w; t.pad_h = pad_h; t.pad_w = pad_w; t.stride_h = stride_h; t.stride_w = stride_w; t.height_col = height_col; t.width_col = width_col; t.nstripes = nstripes; t.is1x1 = is1x1; t.biasvec = biasvec; parallel_for_(Range(0, nstripes), t, nstripes); } virtual void operator ()(const Range &r) const CV_OVERRIDE { const float* data_col_ = data_col; float* data_im_ = data_im; int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col; int coeff_w = (1 - stride_w * height_col * width_col); size_t total = (size_t)channels * height * width; size_t stripeSize = (total + nstripes - 1)/nstripes; size_t startIndex = r.start*stripeSize; size_t endIndex = std::min(r.end*stripeSize, total); int w = (int)(startIndex % width + pad_w); int h = (int)((startIndex / width) % height + pad_h); int c = (int)(startIndex / (width * height)); int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1; int h_col_end = std::min(h / stride_h + 1, height_col); int plane_size_col = height_col * width_col; int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col; bool is1x1_ = is1x1; const float* biasvec_ = biasvec; for (size_t index = startIndex; index < endIndex; index++) { // compute the start and end of the output int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1; int w_col_end = std::min(w / stride_w + 1, width_col); float val; if( is1x1_ ) val = data_im_[index]; else { val = 0.f; for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { val += data_col_[offset + h_col * coeff_h + w_col * coeff_w]; } } } data_im_[index] = val + biasvec_[c]; offset += plane_size_col; if( ++w >= width + pad_w ) { w = (int)((index + 1)% width + pad_w); h = (int)(((index + 1) / width) % height + pad_h); c = (int)((index + 1) / (width * height)); h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1; h_col_end = std::min(h / stride_h + 1, height_col); offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col; } } } }; #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) { std::vector inputs; std::vector outputs; std::vector internals; if (inputs_.depth() == CV_16S) return false; inputs_.getUMatVector(inputs); outputs_.getUMatVector(outputs); internals_.getUMatVector(internals); int outCn = numOutput; int inpCn = inputs[0].size[1]; if (is1x1()) return false; if (umat_weights.empty()) { if (fusedWeights) weightsMat.copyTo(umat_weights); else transpose(blobs[0].reshape(1, inpCn), umat_weights); if (fusedBias) biasesMat.copyTo(umat_biases); else { if (hasBias()) blobs[1].reshape(1, outCn).copyTo(umat_biases); else umat_biases = UMat::zeros(outCn, 1, CV_32F); } } String buildopt = format("-DT=%s ", ocl::typeToStr(inputs[0].type())); buildopt += format("-DPAD_H=%d -DPAD_W=%d -DKERNEL_H=%d -DKERNEL_W=%d -DSTRIDE_H=%d -DSTRIDE_W=%d ", pad.height, pad.width, kernel.height, kernel.width, stride.height, stride.width); for (size_t ii = 0; ii < outputs.size(); ii++) { int ngroups = outCn / blobs[0].size[1]; int inpGroupCn = inpCn / ngroups; int outGroupCn = blobs[0].size[1]; const UMat& inp = inputs[ii]; UMat& out = outputs[ii]; int numImg = inp.size[0]; int inpH = inp.size[2], inpW = inp.size[3]; int outH = out.size[2], outW = out.size[3]; MatShape inpshape = shape(numImg*inpCn, inpH*inpW); MatShape outshape = shape(numImg*outCn, outH*outW); UMat convBlob = inputs[ii].reshape(1, inpshape.size(), &inpshape[0]); UMat decnBlob = out.reshape(1, outshape.size(), &outshape[0]); int rows = internals[0].rows / ngroups; for (int n = 0; n < numImg; n++) { for (int g = 0; g < ngroups; g++) { UMat colMat = internals[0].rowRange(_Range(g * rows, rows)); UMat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn)); UMat wghtMat = umat_weights.colRange(_Range(g * inpGroupCn, inpGroupCn)); gemm(wghtMat, convMat, 1, noArray(), 0, colMat, 0); } for (int g = 0; g < ngroups; g++) { int total = outGroupCn * decnBlob.cols; int index = 0; int height_col = inpH; int width_col = inpW; int coeff_h = (1 - stride.height * kernel.width * height_col) * width_col; int coeff_w = (1 - stride.width * height_col * width_col); ocl::Kernel k("col2im", ocl::dnn::col2im_oclsrc, buildopt); k.set(index++, total); k.set(index++, ocl::KernelArg::PtrReadOnly(internals[0])); k.set(index++, (int)(g * rows * internals[0].cols)); k.set(index++, outGroupCn); k.set(index++, outH); k.set(index++, outW); k.set(index++, height_col); k.set(index++, width_col); k.set(index++, coeff_h); k.set(index++, coeff_w); k.set(index++, ocl::KernelArg::PtrReadOnly(umat_biases)); k.set(index++, (int)(g * outGroupCn * umat_biases.cols)); k.set(index++, ocl::KernelArg::PtrWriteOnly(decnBlob)); k.set(index++, (int)((g + n * ngroups) * outGroupCn * decnBlob.cols)); size_t global[] = { (size_t)total }; bool ret = k.run(1, global, NULL, false); if (!ret) return false; } } } return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), forward_ocl(inputs_arr, outputs_arr, internals_arr)); if (inputs_arr.depth() == CV_16S) { forward_fallback(inputs_arr, outputs_arr, internals_arr); return; } std::vector inputs, outputs, internals; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); internals_arr.getMatVector(internals); int outCn = numOutput; int inpCn = inputs[0].size[1]; bool is1x1flag = is1x1(); int nstripes = getNumThreads(); if( weightsMat.empty() ) { transpose(blobs[0].reshape(1, inpCn), weightsMat); biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F); } for (size_t ii = 0; ii < outputs.size(); ii++) { int ngroups = outCn / blobs[0].size[1]; int inpGroupCn = inpCn / ngroups; int outGroupCn = blobs[0].size[1]; const Mat& inp = inputs[ii]; Mat& out = outputs[ii]; int numImg = inp.size[0]; int inpH = inp.size[2], inpW = inp.size[3]; int outH = out.size[2], outW = out.size[3]; Mat convBlob = inputs[ii].reshape(1, numImg*inpCn); Mat decnBlob = out.reshape(1, numImg*outCn); for (int n = 0; n < numImg; n++) { for (int g = 0; g < ngroups; g++) { Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn)); Mat &colMat = is1x1flag ? dstMat : internals[0]; Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn)); Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn)); Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn)); //gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0); MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes); parallel_for_(Range(0, nstripes), mminvoker, nstripes); Col2ImInvoker::run(colMat.ptr(), outGroupCn, outH, outW, kernel.height, kernel.width, pad.height, pad.width, stride.height, stride.width, inpH, inpW, dstMat.ptr(), curBiasMat.ptr(), is1x1flag); } } } } #ifdef HAVE_CUDA Ptr initCUDA( void *context_, const std::vector>& inputs, const std::vector>& outputs ) override { CV_Assert(!blobs.empty()); auto context = reinterpret_cast(context_); CV_Assert(inputs.size() == 1); auto input_wrapper = inputs[0].dynamicCast(); auto input_shape = input_wrapper->getShape(); CV_Assert(outputs.size() == 1); auto output_wrapper = outputs[0].dynamicCast(); auto output_shape = output_wrapper->getShape(); const auto output_feature_maps = numOutput; const auto output_feature_maps_per_group = blobs[0].size[1]; const auto groups = output_feature_maps / output_feature_maps_per_group; TransposeConvolutionConfiguration config; config.kernel_size.assign(std::begin(kernel_size), std::end(kernel_size)); config.dilations.assign(std::begin(dilations), std::end(dilations)); config.strides.assign(std::begin(strides), std::end(strides)); if (padMode.empty()) { config.padMode = TransposeConvolutionConfiguration::PaddingMode::MANUAL; config.pads_begin.assign(std::begin(pads_begin), std::end(pads_begin)); config.pads_end.assign(std::begin(pads_end), std::end(pads_end)); } else if (padMode == "VALID") { config.padMode = TransposeConvolutionConfiguration::PaddingMode::VALID; } else if (padMode == "SAME") { config.padMode = TransposeConvolutionConfiguration::PaddingMode::SAME; } else { CV_Error(Error::StsNotImplemented, padMode + " padding mode not supported by DeconvolutionLayer"); } config.input_shape.assign(std::begin(input_shape), std::end(input_shape)); config.output_shape.assign(std::begin(output_shape), std::end(output_shape)); config.groups = groups; CV_Assert(blobs.size() >= 1); Mat filtersMat = fusedWeights ? weightsMat.t() : blobs[0]; Mat biasMat = (hasBias() || fusedBias) ? biasesMat : Mat(); if (countNonZero(biasMat) == 0) biasMat = Mat(); return make_cuda_node( preferableTarget, std::move(context->stream), std::move(context->cudnn_handle), config, filtersMat, biasMat); } #endif virtual Ptr initHalide(const std::vector > &inputs) CV_OVERRIDE { #ifdef HAVE_HALIDE CV_Assert(!blobs.empty()); Halide::Buffer inputBuffer = halideBuffer(inputs[0]); int inW, inH, inC, inN; getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN); const int outGroupCn = blobs[0].size[1]; const int group = numOutput / outGroupCn; const int inpGroupCn = blobs[0].size[0] / group; Halide::Var x("x"), y("y"), c("c"), n("n"); Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); Halide::Func padded_input(name + "_constant_exterior"); auto weights = wrapToHalideBuffer(blobs[0]); Halide::Func dilated_input("dilated_input"); dilated_input(x, y, c, n) = 0.0f; Halide::RDom r1(0, inW, 0, inH); dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) = inputBuffer(r1.x, r1.y, c, n); dilated_input.compute_root(); Halide::Func bounded = Halide::BoundaryConditions::constant_exterior(dilated_input, 0, 0, (inW - 1) * stride.width + 1, 0, (inH - 1) * stride.height + 1, 0, inC, 0, inN); padded_input(x, y, c, n) = bounded(x, y, c, n); Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn); Halide::Expr kx = x + pad.width - r.x; Halide::Expr ky = y + pad.height - r.y; Halide::Expr kInC = r.z; Halide::Expr kOutC = c; for (int i = 1; i < group; ++i) { kInC = select(c < outGroupCn * i, kInC, inpGroupCn * i + r.z); kOutC = select(c < outGroupCn * i, kOutC, c - outGroupCn * i); } Halide::Expr topExpr = sum(padded_input(kx, ky, kInC, n) * weights(r.x, r.y, kOutC, kInC)); if (hasBias()) { auto bias = wrapToHalideBuffer(blobs[1], {numOutput}); topExpr += bias(c); } top(x, y, c, n) = topExpr; return Ptr(new HalideBackendNode({ padded_input, top })); #endif // HAVE_HALIDE return Ptr(); } #ifdef HAVE_DNN_NGRAPH virtual Ptr initNgraph(const std::vector > &inputs, const std::vector >& nodes) CV_OVERRIDE { CV_Assert(!blobs.empty()); const int outGroupCn = blobs[0].size[1]; const int group = numOutput / outGroupCn; CV_Assert(group == 1); auto& ieInpNode = nodes[0].dynamicCast()->node; std::vector kernel_shape = getShape(blobs[0]); auto ieWeights = std::make_shared(ngraph::element::f32, kernel_shape, blobs[0].data); if (fusedWeights) { Mat newWeights; transpose(weightsMat, newWeights); ieWeights = std::make_shared(ngraph::element::f32, kernel_shape, newWeights.data); } std::vector paddings_end; if (padMode == "SAME") { for (int i = 0; i < pads_begin.size(); i++) { paddings_end.push_back(kernel_size[i] - pads_begin[i] - 1 - adjust_pads[i]); } adjust_pads = std::vector(pads_begin.size(), 0); } else { paddings_end = pads_end; } ngraph::op::PadType pad_type = padMode == "VALID" ? ngraph::op::PadType::VALID : ngraph::op::PadType::EXPLICIT; auto deconv = std::make_shared( ieInpNode, ieWeights, ngraph::Strides(strides), ngraph::CoordinateDiff(std::vector(pads_begin.begin(), pads_begin.end())), ngraph::CoordinateDiff(std::vector(paddings_end.begin(), paddings_end.end())), ngraph::Strides(dilations), pad_type, ngraph::CoordinateDiff(std::vector(adjust_pads.begin(), adjust_pads.end()))); if (hasBias() || fusedBias) { std::vector shape(deconv->get_shape().size(), 1); shape[1] = numOutput; auto bias = std::make_shared(ngraph::element::f32, ngraph::Shape(shape), blobs[1].data); auto deconv_bias = std::make_shared(deconv, bias, ngraph::op::AutoBroadcastType::NUMPY); return Ptr(new InfEngineNgraphNode(deconv_bias)); } return Ptr(new InfEngineNgraphNode(deconv)); } #endif // HAVE_DNN_NGRAPH virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const CV_OVERRIDE { CV_Assert(inputs.size() == outputs.size()); float flops = 0; int outChannels = blobs[0].size[0]; size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies()); for (int i = 0; i < inputs.size(); i++) { flops += CV_BIG_INT(2)*outChannels*karea*total(inputs[i]); } return flops; } }; Ptr ConvolutionLayer::create(const LayerParams ¶ms) { Ptr l(new ConvolutionLayerImpl(params)); return l; } Ptr DeconvolutionLayer::create(const LayerParams ¶ms) { return Ptr(new DeConvolutionLayerImpl(params)); } } }