// This sample demonstrates working on one piece of data using two GPUs. // It splits input into two parts and processes them separately on different GPUs. #ifdef WIN32 #define NOMINMAX #include #else #include #include #endif #include #include #include "opencv2/core.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/cudastereo.hpp" #include "tick_meter.hpp" using namespace std; using namespace cv; using namespace cv::cuda; /////////////////////////////////////////////////////////// // Thread // OS-specific wrappers for multi-threading #ifdef WIN32 class Thread { struct UserData { void (*func)(void* userData); void* param; }; static DWORD WINAPI WinThreadFunction(LPVOID lpParam) { UserData* userData = static_cast(lpParam); userData->func(userData->param); return 0; } UserData userData_; HANDLE thread_; DWORD threadId_; public: Thread(void (*func)(void* userData), void* userData) { userData_.func = func; userData_.param = userData; thread_ = CreateThread( NULL, // default security attributes 0, // use default stack size WinThreadFunction, // thread function name &userData_, // argument to thread function 0, // use default creation flags &threadId_); // returns the thread identifier } ~Thread() { CloseHandle(thread_); } void wait() { WaitForSingleObject(thread_, INFINITE); } }; #else class Thread { struct UserData { void (*func)(void* userData); void* param; }; static void* PThreadFunction(void* lpParam) { UserData* userData = static_cast(lpParam); userData->func(userData->param); return 0; } pthread_t thread_; UserData userData_; public: Thread(void (*func)(void* userData), void* userData) { userData_.func = func; userData_.param = userData; pthread_create(&thread_, NULL, PThreadFunction, &userData_); } ~Thread() { pthread_detach(thread_); } void wait() { pthread_join(thread_, NULL); } }; #endif /////////////////////////////////////////////////////////// // StereoSingleGpu // Run Stereo algorithm on single GPU class StereoSingleGpu { public: explicit StereoSingleGpu(int deviceId = 0); ~StereoSingleGpu(); void compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity); private: int deviceId_; GpuMat d_leftFrame; GpuMat d_rightFrame; GpuMat d_disparity; Ptr d_alg; }; StereoSingleGpu::StereoSingleGpu(int deviceId) : deviceId_(deviceId) { cuda::setDevice(deviceId_); d_alg = cuda::createStereoBM(256); } StereoSingleGpu::~StereoSingleGpu() { cuda::setDevice(deviceId_); d_leftFrame.release(); d_rightFrame.release(); d_disparity.release(); d_alg.release(); } void StereoSingleGpu::compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity) { cuda::setDevice(deviceId_); d_leftFrame.upload(leftFrame); d_rightFrame.upload(rightFrame); d_alg->compute(d_leftFrame, d_rightFrame, d_disparity); d_disparity.download(disparity); } /////////////////////////////////////////////////////////// // StereoMultiGpuThread // Run Stereo algorithm on two GPUs using different host threads class StereoMultiGpuThread { public: StereoMultiGpuThread(); ~StereoMultiGpuThread(); void compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity); private: GpuMat d_leftFrames[2]; GpuMat d_rightFrames[2]; GpuMat d_disparities[2]; Ptr d_algs[2]; struct StereoLaunchData { int deviceId; Mat leftFrame; Mat rightFrame; Mat disparity; GpuMat* d_leftFrame; GpuMat* d_rightFrame; GpuMat* d_disparity; Ptr d_alg; }; static void launchGpuStereoAlg(void* userData); }; StereoMultiGpuThread::StereoMultiGpuThread() { cuda::setDevice(0); d_algs[0] = cuda::createStereoBM(256); cuda::setDevice(1); d_algs[1] = cuda::createStereoBM(256); } StereoMultiGpuThread::~StereoMultiGpuThread() { cuda::setDevice(0); d_leftFrames[0].release(); d_rightFrames[0].release(); d_disparities[0].release(); d_algs[0].release(); cuda::setDevice(1); d_leftFrames[1].release(); d_rightFrames[1].release(); d_disparities[1].release(); d_algs[1].release(); } void StereoMultiGpuThread::compute(const Mat& leftFrame, const Mat& rightFrame, Mat& disparity) { disparity.create(leftFrame.size(), CV_8UC1); // Split input data onto two parts for each GPUs. // We add small border for each part, // because original algorithm doesn't calculate disparity on image borders. // With such padding we will get output in the middle of final result. StereoLaunchData launchDatas[2]; launchDatas[0].deviceId = 0; launchDatas[0].leftFrame = leftFrame.rowRange(0, leftFrame.rows / 2 + 32); launchDatas[0].rightFrame = rightFrame.rowRange(0, rightFrame.rows / 2 + 32); launchDatas[0].disparity = disparity.rowRange(0, leftFrame.rows / 2); launchDatas[0].d_leftFrame = &d_leftFrames[0]; launchDatas[0].d_rightFrame = &d_rightFrames[0]; launchDatas[0].d_disparity = &d_disparities[0]; launchDatas[0].d_alg = d_algs[0]; launchDatas[1].deviceId = 1; launchDatas[1].leftFrame = leftFrame.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows); launchDatas[1].rightFrame = rightFrame.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows); launchDatas[1].disparity = disparity.rowRange(leftFrame.rows / 2, leftFrame.rows); launchDatas[1].d_leftFrame = &d_leftFrames[1]; launchDatas[1].d_rightFrame = &d_rightFrames[1]; launchDatas[1].d_disparity = &d_disparities[1]; launchDatas[1].d_alg = d_algs[1]; Thread thread0(launchGpuStereoAlg, &launchDatas[0]); Thread thread1(launchGpuStereoAlg, &launchDatas[1]); thread0.wait(); thread1.wait(); } void StereoMultiGpuThread::launchGpuStereoAlg(void* userData) { StereoLaunchData* data = static_cast(userData); cuda::setDevice(data->deviceId); data->d_leftFrame->upload(data->leftFrame); data->d_rightFrame->upload(data->rightFrame); data->d_alg->compute(*data->d_leftFrame, *data->d_rightFrame, *data->d_disparity); if (data->deviceId == 0) data->d_disparity->rowRange(0, data->d_disparity->rows - 32).download(data->disparity); else data->d_disparity->rowRange(32, data->d_disparity->rows).download(data->disparity); } /////////////////////////////////////////////////////////// // StereoMultiGpuStream // Run Stereo algorithm on two GPUs from single host thread using async API class StereoMultiGpuStream { public: StereoMultiGpuStream(); ~StereoMultiGpuStream(); void compute(const HostMem& leftFrame, const HostMem& rightFrame, HostMem& disparity); private: GpuMat d_leftFrames[2]; GpuMat d_rightFrames[2]; GpuMat d_disparities[2]; Ptr d_algs[2]; Ptr streams[2]; }; StereoMultiGpuStream::StereoMultiGpuStream() { cuda::setDevice(0); d_algs[0] = cuda::createStereoBM(256); streams[0] = makePtr(); cuda::setDevice(1); d_algs[1] = cuda::createStereoBM(256); streams[1] = makePtr(); } StereoMultiGpuStream::~StereoMultiGpuStream() { cuda::setDevice(0); d_leftFrames[0].release(); d_rightFrames[0].release(); d_disparities[0].release(); d_algs[0].release(); streams[0].release(); cuda::setDevice(1); d_leftFrames[1].release(); d_rightFrames[1].release(); d_disparities[1].release(); d_algs[1].release(); streams[1].release(); } void StereoMultiGpuStream::compute(const HostMem& leftFrame, const HostMem& rightFrame, HostMem& disparity) { disparity.create(leftFrame.size(), CV_8UC1); // Split input data onto two parts for each GPUs. // We add small border for each part, // because original algorithm doesn't calculate disparity on image borders. // With such padding we will get output in the middle of final result. Mat leftFrameHdr = leftFrame.createMatHeader(); Mat rightFrameHdr = rightFrame.createMatHeader(); Mat disparityHdr = disparity.createMatHeader(); Mat disparityPart0 = disparityHdr.rowRange(0, leftFrame.rows / 2); Mat disparityPart1 = disparityHdr.rowRange(leftFrame.rows / 2, leftFrame.rows); cuda::setDevice(0); d_leftFrames[0].upload(leftFrameHdr.rowRange(0, leftFrame.rows / 2 + 32), *streams[0]); d_rightFrames[0].upload(rightFrameHdr.rowRange(0, leftFrame.rows / 2 + 32), *streams[0]); d_algs[0]->compute(d_leftFrames[0], d_rightFrames[0], d_disparities[0], *streams[0]); d_disparities[0].rowRange(0, leftFrame.rows / 2).download(disparityPart0, *streams[0]); cuda::setDevice(1); d_leftFrames[1].upload(leftFrameHdr.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows), *streams[1]); d_rightFrames[1].upload(rightFrameHdr.rowRange(leftFrame.rows / 2 - 32, leftFrame.rows), *streams[1]); d_algs[1]->compute(d_leftFrames[1], d_rightFrames[1], d_disparities[1], *streams[1]); d_disparities[1].rowRange(32, d_disparities[1].rows).download(disparityPart1, *streams[1]); cuda::setDevice(0); streams[0]->waitForCompletion(); cuda::setDevice(1); streams[1]->waitForCompletion(); } /////////////////////////////////////////////////////////// // main int main(int argc, char** argv) { if (argc != 3) { cerr << "Usage: stereo_multi_gpu " << endl; return -1; } const int numDevices = getCudaEnabledDeviceCount(); if (numDevices != 2) { cerr << "Two GPUs are required" << endl; return -1; } for (int i = 0; i < numDevices; ++i) { DeviceInfo devInfo(i); if (!devInfo.isCompatible()) { cerr << "CUDA module was't built for GPU #" << i << " (" << devInfo.name() << ", CC " << devInfo.majorVersion() << devInfo.minorVersion() << endl; return -1; } printShortCudaDeviceInfo(i); } VideoCapture leftVideo(argv[1]); VideoCapture rightVideo(argv[2]); if (!leftVideo.isOpened()) { cerr << "Can't open " << argv[1] << " video file" << endl; return -1; } if (!rightVideo.isOpened()) { cerr << "Can't open " << argv[2] << " video file" << endl; return -1; } cout << endl; cout << "This sample demonstrates working on one piece of data using two GPUs." << endl; cout << "It splits input into two parts and processes them separately on different GPUs." << endl; cout << endl; Mat leftFrame, rightFrame; HostMem leftGrayFrame, rightGrayFrame; StereoSingleGpu gpu0Alg(0); StereoSingleGpu gpu1Alg(1); StereoMultiGpuThread multiThreadAlg; StereoMultiGpuStream multiStreamAlg; Mat disparityGpu0; Mat disparityGpu1; Mat disparityMultiThread; HostMem disparityMultiStream; Mat disparityGpu0Show; Mat disparityGpu1Show; Mat disparityMultiThreadShow; Mat disparityMultiStreamShow; TickMeter tm; cout << "-------------------------------------------------------------------" << endl; cout << "| Frame | GPU 0 ms | GPU 1 ms | Multi Thread ms | Multi Stream ms |" << endl; cout << "-------------------------------------------------------------------" << endl; for (int i = 0;; ++i) { leftVideo >> leftFrame; rightVideo >> rightFrame; if (leftFrame.empty() || rightFrame.empty()) break; if (leftFrame.size() != rightFrame.size()) { cerr << "Frames have different sizes" << endl; return -1; } leftGrayFrame.create(leftFrame.size(), CV_8UC1); rightGrayFrame.create(leftFrame.size(), CV_8UC1); cvtColor(leftFrame, leftGrayFrame.createMatHeader(), COLOR_BGR2GRAY); cvtColor(rightFrame, rightGrayFrame.createMatHeader(), COLOR_BGR2GRAY); tm.reset(); tm.start(); gpu0Alg.compute(leftGrayFrame.createMatHeader(), rightGrayFrame.createMatHeader(), disparityGpu0); tm.stop(); const double gpu0Time = tm.getTimeMilli(); tm.reset(); tm.start(); gpu1Alg.compute(leftGrayFrame.createMatHeader(), rightGrayFrame.createMatHeader(), disparityGpu1); tm.stop(); const double gpu1Time = tm.getTimeMilli(); tm.reset(); tm.start(); multiThreadAlg.compute(leftGrayFrame.createMatHeader(), rightGrayFrame.createMatHeader(), disparityMultiThread); tm.stop(); const double multiThreadTime = tm.getTimeMilli(); tm.reset(); tm.start(); multiStreamAlg.compute(leftGrayFrame, rightGrayFrame, disparityMultiStream); tm.stop(); const double multiStreamTime = tm.getTimeMilli(); cout << "| " << setw(5) << i << " | " << setw(8) << setprecision(1) << fixed << gpu0Time << " | " << setw(8) << setprecision(1) << fixed << gpu1Time << " | " << setw(15) << setprecision(1) << fixed << multiThreadTime << " | " << setw(15) << setprecision(1) << fixed << multiStreamTime << " |" << endl; resize(disparityGpu0, disparityGpu0Show, Size(1024, 768), 0, 0, INTER_AREA); resize(disparityGpu1, disparityGpu1Show, Size(1024, 768), 0, 0, INTER_AREA); resize(disparityMultiThread, disparityMultiThreadShow, Size(1024, 768), 0, 0, INTER_AREA); resize(disparityMultiStream.createMatHeader(), disparityMultiStreamShow, Size(1024, 768), 0, 0, INTER_AREA); imshow("disparityGpu0", disparityGpu0Show); imshow("disparityGpu1", disparityGpu1Show); imshow("disparityMultiThread", disparityMultiThreadShow); imshow("disparityMultiStream", disparityMultiStreamShow); const int key = waitKey(30) & 0xff; if (key == 27) break; } cout << "-------------------------------------------------------------------" << endl; return 0; }