/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "perf_precomp.hpp" #include "opencv2/photo/cuda.hpp" #include "opencv2/ts/cuda_perf.hpp" #include "opencv2/opencv_modules.hpp" #if defined (HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAIMGPROC) using namespace std; using namespace testing; using namespace perf; #define CUDA_DENOISING_IMAGE_SIZES testing::Values(perf::szVGA, perf::sz720p) ////////////////////////////////////////////////////////////////////// // nonLocalMeans DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth, MatCn, int, int); PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, CUDA_NonLocalMeans, Combine(CUDA_DENOISING_IMAGE_SIZES, Values(CV_8U), CUDA_CHANNELS_1_3, Values(21), Values(5))) { declare.time(600.0); const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int search_widow_size = GET_PARAM(3); const int block_size = GET_PARAM(4); const float h = 10; const int borderMode = cv::BORDER_REFLECT101; const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_CUDA()) { const cv::cuda::GpuMat d_src(src); cv::cuda::GpuMat dst; TEST_CYCLE() cv::cuda::nonLocalMeans(d_src, dst, h, search_widow_size, block_size, borderMode); CUDA_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // fastNonLocalMeans DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth, MatCn, int, int); PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, CUDA_FastNonLocalMeans, Combine(CUDA_DENOISING_IMAGE_SIZES, Values(CV_8U), CUDA_CHANNELS_1_3, Values(21), Values(7))) { declare.time(60.0); const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int search_widow_size = GET_PARAM(2); const int block_size = GET_PARAM(3); const float h = 10; const int type = CV_MAKE_TYPE(depth, 1); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_CUDA()) { const cv::cuda::GpuMat d_src(src); cv::cuda::GpuMat dst; TEST_CYCLE() cv::cuda::fastNlMeansDenoising(d_src, dst, h, search_widow_size, block_size); CUDA_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::fastNlMeansDenoising(src, dst, h, block_size, search_widow_size); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // fastNonLocalMeans (colored) DEF_PARAM_TEST(Sz_Depth_WinSz_BlockSz, cv::Size, MatDepth, int, int); PERF_TEST_P(Sz_Depth_WinSz_BlockSz, CUDA_FastNonLocalMeansColored, Combine(CUDA_DENOISING_IMAGE_SIZES, Values(CV_8U), Values(21), Values(7))) { declare.time(60.0); const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int search_widow_size = GET_PARAM(2); const int block_size = GET_PARAM(3); const float h = 10; const int type = CV_MAKE_TYPE(depth, 3); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_CUDA()) { const cv::cuda::GpuMat d_src(src); cv::cuda::GpuMat dst; TEST_CYCLE() cv::cuda::fastNlMeansDenoisingColored(d_src, dst, h, h, search_widow_size, block_size); CUDA_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::fastNlMeansDenoisingColored(src, dst, h, h, block_size, search_widow_size); CPU_SANITY_CHECK(dst); } } #endif