/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and / or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace { using namespace cv::softcascade; class HOG6MagLuv : public ChannelFeatureBuilder { enum {N_CHANNELS = 10}; public: virtual ~HOG6MagLuv() {} virtual cv::AlgorithmInfo* info() const; virtual int totalChannels() const {return N_CHANNELS; } virtual void operator()(cv::InputArray _frame, cv::OutputArray _integrals, cv::Size channelsSize) const { CV_Assert(_frame.type() == CV_8UC3); cv::Mat frame = _frame.getMat(); int h = frame.rows; int w = frame.cols; if (channelsSize != cv::Size()) _integrals.create(channelsSize.height * N_CHANNELS + 1, channelsSize.width + 1, CV_32SC1); if(_integrals.empty()) _integrals.create(frame.rows * N_CHANNELS + 1, frame.cols + 1, CV_32SC1); cv::Mat& integrals = _integrals.getMatRef(); cv::Mat channels, gray; channels.create(h * N_CHANNELS, w, CV_8UC1); channels.setTo(0); cvtColor(frame, gray, CV_BGR2GRAY); cv::Mat df_dx, df_dy, mag, angle; cv::Sobel(gray, df_dx, CV_32F, 1, 0); cv::Sobel(gray, df_dy, CV_32F, 0, 1); cv::cartToPolar(df_dx, df_dy, mag, angle, true); mag *= (1.f / (8 * sqrt(2.f))); cv::Mat nmag = channels(cv::Rect(0, h * (N_CHANNELS - 4), w, h)); mag.convertTo(nmag, CV_8UC1); angle *= 6 / 360.f; for (int y = 0; y < h; ++y) { uchar* magnitude = nmag.ptr(y); float* ang = angle.ptr(y); for (int x = 0; x < w; ++x) { channels.ptr(y + (h * (int)ang[x]))[x] = magnitude[x]; } } cv::Mat luv, shrunk; cv::cvtColor(frame, luv, CV_BGR2Luv); std::vector splited; for (int i = 0; i < 3; ++i) splited.push_back(channels(cv::Rect(0, h * (7 + i), w, h))); split(luv, splited); cv::resize(channels, shrunk, cv::Size(integrals.cols - 1, integrals.rows - 1), -1 , -1, CV_INTER_AREA); cv::integral(shrunk, integrals, cv::noArray(), CV_32S); } }; } using cv::softcascade::ChannelFeatureBuilder; using cv::softcascade::ChannelFeature; CV_INIT_ALGORITHM(HOG6MagLuv, "ChannelFeatureBuilder.HOG6MagLuv", ); ChannelFeatureBuilder::~ChannelFeatureBuilder() {} cv::Ptr ChannelFeatureBuilder::create(const std::string& featureType) { return Algorithm::create("ChannelFeatureBuilder." + featureType); } ChannelFeature::ChannelFeature(int x, int y, int w, int h, int ch) : bb(cv::Rect(x, y, w, h)), channel(ch) {} bool ChannelFeature::operator ==(ChannelFeature b) { return bb == b.bb && channel == b.channel; } bool ChannelFeature::operator !=(ChannelFeature b) { return bb != b.bb || channel != b.channel; } float ChannelFeature::operator() (const cv::Mat& integrals, const cv::Size& model) const { int step = model.width + 1; const int* ptr = integrals.ptr(0) + (model.height * channel + bb.y) * step + bb.x; int a = ptr[0]; int b = ptr[bb.width]; ptr += bb.height * step; int c = ptr[bb.width]; int d = ptr[0]; return (float)(a - b + c - d); } void cv::softcascade::write(cv::FileStorage& fs, const std::string&, const ChannelFeature& f) { fs << "{" << "channel" << f.channel << "rect" << f.bb << "}"; } std::ostream& cv::softcascade::operator<<(std::ostream& out, const ChannelFeature& m) { out << m.channel << " " << m.bb; return out; } ChannelFeature::~ChannelFeature(){} namespace { using namespace cv::softcascade; class ChannelFeaturePool : public FeaturePool { public: ChannelFeaturePool(cv::Size m, int n, int ch) : FeaturePool(), model(m), N_CHANNELS(ch) { CV_Assert(m != cv::Size() && n > 0 && (ch == 10 || ch == 8)); fill(n); } virtual int size() const { return (int)pool.size(); } virtual float apply(int fi, int si, const cv::Mat& integrals) const; virtual void write( cv::FileStorage& fs, int index) const; virtual ~ChannelFeaturePool() {} private: void fill(int desired); cv::Size model; std::vector pool; int N_CHANNELS; }; float ChannelFeaturePool::apply(int fi, int si, const cv::Mat& integrals) const { return pool[fi](integrals.row(si), model); } void ChannelFeaturePool::write( cv::FileStorage& fs, int index) const { CV_Assert((index >= 0) && (index < (int)pool.size())); fs << pool[index]; } void ChannelFeaturePool::fill(int desired) { using namespace cv::softcascade::internal; int mw = model.width; int mh = model.height; int maxPoolSize = (mw -1) * mw / 2 * (mh - 1) * mh / 2 * N_CHANNELS; int nfeatures = std::min(desired, maxPoolSize); pool.reserve(nfeatures); Random::engine eng((Random::seed_type)FEATURE_RECT_SEED); Random::engine eng_ch(DCHANNELS_SEED); Random::uniform chRand(0, N_CHANNELS - 1); Random::uniform xRand(0, model.width - 2); Random::uniform yRand(0, model.height - 2); Random::uniform wRand(1, model.width - 1); Random::uniform hRand(1, model.height - 1); while (pool.size() < size_t(nfeatures)) { int x = xRand(eng); int y = yRand(eng); int w = 1 + wRand(eng, model.width - x - 1); int h = 1 + hRand(eng, model.height - y - 1); CV_Assert(w > 0); CV_Assert(h > 0); CV_Assert(w + x < model.width); CV_Assert(h + y < model.height); int ch = chRand(eng_ch); ChannelFeature f(x, y, w, h, ch); if (std::find(pool.begin(), pool.end(),f) == pool.end()) { pool.push_back(f); } } } } cv::Ptr FeaturePool::create(const cv::Size& model, int nfeatures, int nchannels ) { cv::Ptr pool(new ChannelFeaturePool(model, nfeatures, nchannels)); return pool; }