/////////////////////////////////////////////////////////////////////////////////////// // sample_logistic_regression.cpp // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // This is a sample program demostrating classification of digits 0 and 1 using Logistic Regression // AUTHOR: // Rahul Kavi rahulkavi[at]live[at]com // #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/ml/ml.hpp> #include <opencv2/highgui/highgui.hpp> using namespace std; using namespace cv; int main() { Mat data_temp, labels_temp; Mat data, labels; Mat data_train, data_test; Mat labels_train, labels_test; Mat responses, result; FileStorage f; cout<<"*****************************************************************************************"<<endl; cout<<"\"data01.xml\" contains digits 0 and 1 of 20 samples each, collected on an Android device"<<endl; cout<<"Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"<<endl; cout<<"*****************************************************************************************\n\n"<<endl; cout<<"loading the dataset\n"<<endl; f.open("data01.xml", FileStorage::READ); f["datamat"] >> data_temp; f["labelsmat"] >> labels_temp; data_temp.convertTo(data, CV_32F); labels_temp.convertTo(labels, CV_32F); for(int i =0;i<data.rows;i++) { if(i%2 ==0) { data_train.push_back(data.row(i)); labels_train.push_back(labels.row(i)); } else { data_test.push_back(data.row(i)); labels_test.push_back(labels.row(i)); } } cout<<"training samples per class: "<<data_train.rows/2<<endl; cout<<"testing samples per class: "<<data_test.rows/2<<endl; // display sample image Mat img_disp1 = data_train.row(2).reshape(0,28).t(); Mat img_disp2 = data_train.row(18).reshape(0,28).t(); imshow("digit 0", img_disp1); imshow("digit 1", img_disp2); cout<<"initializing Logisitc Regression Parameters\n"<<endl; CvLR_TrainParams params = CvLR_TrainParams(); params.alpha = 0.001; params.num_iters = 10; params.norm = CvLR::REG_L2; params.regularized = 1; params.train_method = CvLR::BATCH; cout<<"training Logisitc Regression classifier\n"<<endl; CvLR lr_(data_train, labels_train, params); lr_.predict(data_test, responses); labels_test.convertTo(labels_test, CV_32S); cout<<"Original Label :: Predicted Label"<<endl; result = (labels_test == responses)/255; for(int i=0;i<labels_test.rows;i++) { cout<<labels_test.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl; } // calculate accuracy cout<<"accuracy: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n"; cout<<"saving the classifier"<<endl; // save the classfier lr_.save("NewLR_Trained.xml"); // load the classifier onto new object CvLR lr2; cout<<"loading a new classifier"<<endl; lr2.load("NewLR_Trained.xml"); Mat responses2; // predict using loaded classifier cout<<"predicting the dataset using the loaded classfier\n"<<endl; lr2.predict(data_test, responses2); // calculate accuracy result = (labels_test == responses2)/255; cout<<"accuracy using loaded classifier: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n"; waitKey(0); return 0; }