// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Used in accuracy and perf tests as a content of .cpp file // Note: don't use "precomp.hpp" here #include "opencv2/ts.hpp" #include "opencv2/ts/ts_perf.hpp" #include "opencv2/core/utility.hpp" #include "opencv2/core/ocl.hpp" #include "opencv2/dnn.hpp" #include "test_common.hpp" #include #include namespace cv { namespace dnn { CV__DNN_INLINE_NS_BEGIN void PrintTo(const cv::dnn::Backend& v, std::ostream* os) { switch (v) { case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return; case DNN_BACKEND_HALIDE: *os << "HALIDE"; return; case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE*"; return; case DNN_BACKEND_VKCOM: *os << "VKCOM"; return; case DNN_BACKEND_OPENCV: *os << "OCV"; return; case DNN_BACKEND_CUDA: *os << "CUDA"; return; case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019: *os << "DLIE"; return; case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH: *os << "NGRAPH"; return; } // don't use "default:" to emit compiler warnings *os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")"; } void PrintTo(const cv::dnn::Target& v, std::ostream* os) { switch (v) { case DNN_TARGET_CPU: *os << "CPU"; return; case DNN_TARGET_OPENCL: *os << "OCL"; return; case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return; case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return; case DNN_TARGET_HDDL: *os << "HDDL"; return; case DNN_TARGET_VULKAN: *os << "VULKAN"; return; case DNN_TARGET_FPGA: *os << "FPGA"; return; case DNN_TARGET_CUDA: *os << "CUDA"; return; case DNN_TARGET_CUDA_FP16: *os << "CUDA_FP16"; return; } // don't use "default:" to emit compiler warnings *os << "DNN_TARGET_UNKNOWN(" << (int)v << ")"; } void PrintTo(const tuple v, std::ostream* os) { PrintTo(get<0>(v), os); *os << "/"; PrintTo(get<1>(v), os); } CV__DNN_INLINE_NS_END }} // namespace namespace opencv_test { void normAssert( cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/, double l1 /*= 0.00001*/, double lInf /*= 0.0001*/) { double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); EXPECT_LE(normL1, l1) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF); double normInf = cvtest::norm(ref, test, cv::NORM_INF); EXPECT_LE(normInf, lInf) << comment << " |ref| = " << cvtest::norm(ref, cv::NORM_INF); } std::vector matToBoxes(const cv::Mat& m) { EXPECT_EQ(m.type(), CV_32FC1); EXPECT_EQ(m.dims, 2); EXPECT_EQ(m.cols, 4); std::vector boxes(m.rows); for (int i = 0; i < m.rows; ++i) { CV_Assert(m.row(i).isContinuous()); const float* data = m.ptr(i); double l = data[0], t = data[1], r = data[2], b = data[3]; boxes[i] = cv::Rect2d(l, t, r - l, b - t); } return boxes; } void normAssertDetections( const std::vector& refClassIds, const std::vector& refScores, const std::vector& refBoxes, const std::vector& testClassIds, const std::vector& testScores, const std::vector& testBoxes, const char *comment /*= ""*/, double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/) { ASSERT_FALSE(testClassIds.empty()) << "No detections"; std::vector matchedRefBoxes(refBoxes.size(), false); std::vector refBoxesIoUDiff(refBoxes.size(), 1.0); for (int i = 0; i < testBoxes.size(); ++i) { //cout << "Test[i=" << i << "]: score=" << testScores[i] << " id=" << testClassIds[i] << " box " << testBoxes[i] << endl; double testScore = testScores[i]; if (testScore < confThreshold) continue; int testClassId = testClassIds[i]; const cv::Rect2d& testBox = testBoxes[i]; bool matched = false; double topIoU = 0; for (int j = 0; j < refBoxes.size() && !matched; ++j) { if (!matchedRefBoxes[j] && testClassId == refClassIds[j] && std::abs(testScore - refScores[j]) < scores_diff) { double interArea = (testBox & refBoxes[j]).area(); double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea); topIoU = std::max(topIoU, iou); refBoxesIoUDiff[j] = std::min(refBoxesIoUDiff[j], 1.0f - iou); if (1.0 - iou < boxes_iou_diff) { matched = true; matchedRefBoxes[j] = true; } } } if (!matched) { std::cout << cv::format("Unmatched prediction: class %d score %f box ", testClassId, testScore) << testBox << std::endl; std::cout << "Highest IoU: " << topIoU << std::endl; } EXPECT_TRUE(matched) << comment; } // Check unmatched reference detections. for (int i = 0; i < refBoxes.size(); ++i) { if (!matchedRefBoxes[i] && refScores[i] > confThreshold) { std::cout << cv::format("Unmatched reference: class %d score %f box ", refClassIds[i], refScores[i]) << refBoxes[i] << " IoU diff: " << refBoxesIoUDiff[i] << std::endl; EXPECT_LE(refScores[i], confThreshold) << comment; } } } // For SSD-based object detection networks which produce output of shape 1x1xNx7 // where N is a number of detections and an every detection is represented by // a vector [batchId, classId, confidence, left, top, right, bottom]. void normAssertDetections( cv::Mat ref, cv::Mat out, const char *comment /*= ""*/, double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/) { CV_Assert(ref.total() % 7 == 0); CV_Assert(out.total() % 7 == 0); ref = ref.reshape(1, ref.total() / 7); out = out.reshape(1, out.total() / 7); cv::Mat refClassIds, testClassIds; ref.col(1).convertTo(refClassIds, CV_32SC1); out.col(1).convertTo(testClassIds, CV_32SC1); std::vector refScores(ref.col(2)), testScores(out.col(2)); std::vector refBoxes = matToBoxes(ref.colRange(3, 7)); std::vector testBoxes = matToBoxes(out.colRange(3, 7)); normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores, testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff); } void readFileContent(const std::string& filename, CV_OUT std::vector& content) { const std::ios::openmode mode = std::ios::in | std::ios::binary; std::ifstream ifs(filename.c_str(), mode); ASSERT_TRUE(ifs.is_open()); content.clear(); ifs.seekg(0, std::ios::end); const size_t sz = ifs.tellg(); content.resize(sz); ifs.seekg(0, std::ios::beg); ifs.read((char*)content.data(), sz); ASSERT_FALSE(ifs.fail()); } testing::internal::ParamGenerator< tuple > dnnBackendsAndTargets( bool withInferenceEngine /*= true*/, bool withHalide /*= false*/, bool withCpuOCV /*= true*/, bool withVkCom /*= true*/, bool withCUDA /*= true*/, bool withNgraph /*= true*/ ) { #ifdef HAVE_INF_ENGINE bool withVPU = validateVPUType(); #endif std::vector< tuple > targets; std::vector< Target > available; if (withHalide) { available = getAvailableTargets(DNN_BACKEND_HALIDE); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i)); } #ifdef HAVE_INF_ENGINE if (withInferenceEngine) { available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) { if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU) continue; targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i)); } } if (withNgraph) { available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) { if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU) continue; targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i)); } } #else CV_UNUSED(withInferenceEngine); #endif if (withVkCom) { available = getAvailableTargets(DNN_BACKEND_VKCOM); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) targets.push_back(make_tuple(DNN_BACKEND_VKCOM, *i)); } #ifdef HAVE_CUDA if(withCUDA) { for (auto target : getAvailableTargets(DNN_BACKEND_CUDA)) targets.push_back(make_tuple(DNN_BACKEND_CUDA, target)); } #endif { available = getAvailableTargets(DNN_BACKEND_OPENCV); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) { if (!withCpuOCV && *i == DNN_TARGET_CPU) continue; targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i)); } } if (targets.empty()) // validate at least CPU mode targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)); return testing::ValuesIn(targets); } testing::internal::ParamGenerator< tuple > dnnBackendsAndTargetsIE() { #ifdef HAVE_INF_ENGINE bool withVPU = validateVPUType(); std::vector< tuple > targets; std::vector< Target > available; { available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) { if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU) continue; targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, *i)); } } { available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) { if ((*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) && !withVPU) continue; targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, *i)); } } return testing::ValuesIn(targets); #else return testing::ValuesIn(std::vector< tuple >()); #endif } #ifdef HAVE_INF_ENGINE static std::string getTestInferenceEngineVPUType() { static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", ""); return param_vpu_type; } static bool validateVPUType_() { std::string test_vpu_type = getTestInferenceEngineVPUType(); if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled") { return false; } std::vector available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE); bool have_vpu_target = false; for (std::vector::const_iterator i = available.begin(); i != available.end(); ++i) { if (*i == DNN_TARGET_MYRIAD || *i == DNN_TARGET_HDDL) { have_vpu_target = true; break; } } if (test_vpu_type.empty()) { if (have_vpu_target) { CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.") } } else { if (!have_vpu_target) { CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP."); exit(1); } std::string dnn_vpu_type = getInferenceEngineVPUType(); if (dnn_vpu_type != test_vpu_type) { CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP."); exit(1); } } if (have_vpu_target) { std::string dnn_vpu_type = getInferenceEngineVPUType(); if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2) registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); } return true; } bool validateVPUType() { static bool result = validateVPUType_(); return result; } #endif // HAVE_INF_ENGINE void initDNNTests() { const char* extraTestDataPath = #ifdef WINRT NULL; #else getenv("OPENCV_DNN_TEST_DATA_PATH"); #endif if (extraTestDataPath) cvtest::addDataSearchPath(extraTestDataPath); registerGlobalSkipTag( CV_TEST_TAG_DNN_SKIP_HALIDE, CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16 ); #if defined(INF_ENGINE_RELEASE) registerGlobalSkipTag( CV_TEST_TAG_DNN_SKIP_IE, #if INF_ENGINE_VER_MAJOR_EQ(2018050000) CV_TEST_TAG_DNN_SKIP_IE_2018R5, #elif INF_ENGINE_VER_MAJOR_EQ(2019010000) CV_TEST_TAG_DNN_SKIP_IE_2019R1, # if INF_ENGINE_RELEASE == 2019010100 CV_TEST_TAG_DNN_SKIP_IE_2019R1_1, # endif #elif INF_ENGINE_VER_MAJOR_EQ(2019020000) CV_TEST_TAG_DNN_SKIP_IE_2019R2, #elif INF_ENGINE_VER_MAJOR_EQ(2019030000) CV_TEST_TAG_DNN_SKIP_IE_2019R3, #endif #ifdef HAVE_DNN_NGRAPH CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, #endif #ifdef HAVE_DNN_IE_NN_BUILDER_2019 CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, #endif "" ); #endif registerGlobalSkipTag( // see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16 ); #ifdef HAVE_VULKAN registerGlobalSkipTag( CV_TEST_TAG_DNN_SKIP_VULKAN ); #endif #ifdef HAVE_CUDA registerGlobalSkipTag( CV_TEST_TAG_DNN_SKIP_CUDA, CV_TEST_TAG_DNN_SKIP_CUDA_FP32, CV_TEST_TAG_DNN_SKIP_CUDA_FP16 ); #endif } } // namespace