\section{Object detection and descriptors} \ifCpp \cvclass{RandomizedTree} The class contains base structure for \texttt{RTreeClassifier} \begin{lstlisting} class CV_EXPORTS RandomizedTree { public: friend class RTreeClassifier; RandomizedTree(); ~RandomizedTree(); void train(std::vector const& base_set, cv::RNG &rng, int depth, int views, size_t reduced_num_dim, int num_quant_bits); void train(std::vector const& base_set, cv::RNG &rng, PatchGenerator &make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits); // following two funcs are EXPERIMENTAL //(do not use unless you know exactly what you do) static void quantizeVector(float *vec, int dim, int N, float bnds[2], int clamp_mode=0); static void quantizeVector(float *src, int dim, int N, float bnds[2], uchar *dst); // patch_data must be a 32x32 array (no row padding) float* getPosterior(uchar* patch_data); const float* getPosterior(uchar* patch_data) const; uchar* getPosterior2(uchar* patch_data); void read(const char* file_name, int num_quant_bits); void read(std::istream &is, int num_quant_bits); void write(const char* file_name) const; void write(std::ostream &os) const; int classes() { return classes_; } int depth() { return depth_; } void discardFloatPosteriors() { freePosteriors(1); } inline void applyQuantization(int num_quant_bits) { makePosteriors2(num_quant_bits); } private: int classes_; int depth_; int num_leaves_; std::vector nodes_; float **posteriors_; // 16-bytes aligned posteriors uchar **posteriors2_; // 16-bytes aligned posteriors std::vector leaf_counts_; void createNodes(int num_nodes, cv::RNG &rng); void allocPosteriorsAligned(int num_leaves, int num_classes); void freePosteriors(int which); // which: 1=posteriors_, 2=posteriors2_, 3=both void init(int classes, int depth, cv::RNG &rng); void addExample(int class_id, uchar* patch_data); void finalize(size_t reduced_num_dim, int num_quant_bits); int getIndex(uchar* patch_data) const; inline float* getPosteriorByIndex(int index); inline uchar* getPosteriorByIndex2(int index); inline const float* getPosteriorByIndex(int index) const; void convertPosteriorsToChar(); void makePosteriors2(int num_quant_bits); void compressLeaves(size_t reduced_num_dim); void estimateQuantPercForPosteriors(float perc[2]); }; \end{lstlisting} \cvCppFunc{RandomizedTree::train} Trains a randomized tree using input set of keypoints \cvdefCpp{ void train(std::vector const\& base\_set, cv::RNG \&rng, PatchGenerator \&make\_patch, int depth, int views, size\_t reduced\_num\_dim, int num\_quant\_bits); } \cvdefCpp{ void train(std::vector const\& base\_set, cv::RNG \&rng, PatchGenerator \&make\_patch, int depth, int views, size\_t reduced\_num\_dim, int num\_quant\_bits); } \begin{description} \cvarg{base\_set} {Vector of \texttt{BaseKeypoint} type. Contains keypoints from the image are used for training} \cvarg{rng} {Random numbers generator is used for training} \cvarg{make\_patch} {Patch generator is used for training} \cvarg{depth} {Maximum tree depth} %\cvarg{views} {} \cvarg{reduced\_num\_dim} {Number of dimensions are used in compressed signature} \cvarg{num\_quant\_bits} {Number of bits are used for quantization} \end{description} \cvCppFunc {RandomizedTree::read} Reads pre-saved randomized tree from file or stream \cvdefCpp{read(const char* file\_name, int num\_quant\_bits)} \cvdefCpp{read(std::istream \&is, int num\_quant\_bits)} \begin{description} \cvarg{file\_name}{Filename of file contains randomized tree data} \cvarg{is}{Input stream associated with file contains randomized tree data} \cvarg{num\_quant\_bits} {Number of bits are used for quantization} \end{description} \cvCppFunc {RandomizedTree::write} Writes current randomized tree to a file or stream \cvdefCpp{void write(const char* file\_name) const;} \cvdefCpp{void write(std::ostream \&os) const;} \begin{description} \cvarg{file\_name}{Filename of file where randomized tree data will be stored} \cvarg{is}{Output stream associated with file where randomized tree data will be stored} \end{description} \cvCppFunc {RandomizedTree::applyQuantization} Applies quantization to the current randomized tree \cvdefCpp{void applyQuantization(int num\_quant\_bits)} \begin{description} \cvarg{num\_quant\_bits} {Number of bits are used for quantization} \end{description} \cvstruct{RTreeNode} The class contains base structure for \texttt{RandomizedTree} \begin{lstlisting} struct RTreeNode { short offset1, offset2; RTreeNode() {} RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2) : offset1(y1*PATCH_SIZE + x1), offset2(y2*PATCH_SIZE + x2) {} //! Left child on 0, right child on 1 inline bool operator() (uchar* patch_data) const { return patch_data[offset1] > patch_data[offset2]; } }; \end{lstlisting} \cvclass{RTreeClassifier} The class contains \texttt{RTreeClassifier}. It represents calonder descriptor which was originally introduced by Michael Calonder \begin{lstlisting} class CV_EXPORTS RTreeClassifier { public: static const int DEFAULT_TREES = 48; static const size_t DEFAULT_NUM_QUANT_BITS = 4; RTreeClassifier(); void train(std::vector const& base_set, cv::RNG &rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true); void train(std::vector const& base_set, cv::RNG &rng, PatchGenerator &make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true); // sig must point to a memory block of at least //classes()*sizeof(float|uchar) bytes void getSignature(IplImage *patch, uchar *sig); void getSignature(IplImage *patch, float *sig); void getSparseSignature(IplImage *patch, float *sig, float thresh); static int countNonZeroElements(float *vec, int n, double tol=1e-10); static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, int sig_len=176); static inline uchar* safeSignatureAlloc(int num_sig=1, int sig_len=176); inline int classes() { return classes_; } inline int original_num_classes() { return original_num_classes_; } void setQuantization(int num_quant_bits); void discardFloatPosteriors(); void read(const char* file_name); void read(std::istream &is); void write(const char* file_name) const; void write(std::ostream &os) const; std::vector trees_; private: int classes_; int num_quant_bits_; uchar **posteriors_; ushort *ptemp_; int original_num_classes_; bool keep_floats_; }; \end{lstlisting} \cvCppFunc{RTreeClassifier::train} Trains a randomized tree classificator using input set of keypoints \cvdefCpp{ void train(std::vector const\& base\_set, cv::RNG \&rng, int num\_trees = RTreeClassifier::DEFAULT\_TREES, int depth = DEFAULT\_DEPTH, int views = DEFAULT\_VIEWS, size\_t reduced\_num\_dim = DEFAULT\_REDUCED\_NUM\_DIM, int num\_quant\_bits = DEFAULT\_NUM\_QUANT\_BITS, bool print\_status = true); } \cvdefCpp{ void train(std::vector const\& base\_set, cv::RNG \&rng, PatchGenerator \&make\_patch, int num\_trees = RTreeClassifier::DEFAULT\_TREES, int depth = DEFAULT\_DEPTH, int views = DEFAULT\_VIEWS, size\_t reduced\_num\_dim = DEFAULT\_REDUCED\_NUM\_DIM, int num\_quant\_bits = DEFAULT\_NUM\_QUANT\_BITS, bool print\_status = true); } \begin{description} \cvarg{base\_set} {Vector of \texttt{BaseKeypoint} type. Contains keypoints from the image are used for training} \cvarg{rng} {Random numbers generator is used for training} \cvarg{make\_patch} {Patch generator is used for training} \cvarg{num\_trees} {Number of randomized trees used in RTreeClassificator} \cvarg{depth} {Maximum tree depth} %\cvarg{views} {} \cvarg{reduced\_num\_dim} {Number of dimensions are used in compressed signature} \cvarg{num\_quant\_bits} {Number of bits are used for quantization} \cvarg{print\_status} {Print current status of training on the console} \end{description} \cvCppFunc{RTreeClassifier::getSignature} Returns signature for image patch \cvdefCpp{ void getSignature(IplImage *patch, uchar *sig) } \cvdefCpp{ void getSignature(IplImage *patch, float *sig) } \begin{description} \cvarg{patch} {Image patch to calculate signature for} \cvarg{sig} {Output signature (array dimension is \texttt{reduced\_num\_dim)}} \end{description} \cvCppFunc{RTreeClassifier::getSparseSignature} The function is simular to \texttt{getSignature} but uses the threshold for removing all signature elements less than the threshold. So that the signature is compressed \cvdefCpp{ void getSparseSignature(IplImage *patch, float *sig, float thresh); } \begin{description} \cvarg{patch} {Image patch to calculate signature for} \cvarg{sig} {Output signature (array dimension is \texttt{reduced\_num\_dim)}} \cvarg{tresh} {The threshold that is used for compressing the signature} \end{description} \cvCppFunc{RTreeClassifier::countNonZeroElements} The function returns the number of non-zero elements in the input array. \cvdefCpp{ static int countNonZeroElements(float *vec, int n, double tol=1e-10); } \begin{description} \cvarg{vec}{Input vector contains float elements} \cvarg{n}{Input vector size} \cvarg{tol} {The threshold used for elements counting. We take all elements are less than \texttt{tol} as zero elements} \end{description} \cvCppFunc {RTreeClassifier::read} Reads pre-saved RTreeClassifier from file or stream \cvdefCpp{read(const char* file\_name)} \cvdefCpp{read(std::istream \&is)} \begin{description} \cvarg{file\_name}{Filename of file contains randomized tree data} \cvarg{is}{Input stream associated with file contains randomized tree data} \end{description} \cvCppFunc {RTreeClassifier::write} Writes current RTreeClassifier to a file or stream \cvdefCpp{void write(const char* file\_name) const;} \cvdefCpp{void write(std::ostream \&os) const;} \begin{description} \cvarg{file\_name}{Filename of file where randomized tree data will be stored} \cvarg{is}{Output stream associated with file where randomized tree data will be stored} \end{description} \cvCppFunc {RTreeClassifier::setQuantization} Applies quantization to the current randomized tree \cvdefCpp{void setQuantization(int num\_quant\_bits)} \begin{description} \cvarg{num\_quant\_bits} {Number of bits are used for quantization} \end{description} Below there is an example of \texttt{RTreeClassifier} usage for feature matching. There are test and train images and we extract features from both with SURF. Output is $best\_corr$ and $best\_corr\_idx$ arrays which keep the best probabilities and corresponding features indexes for every train feature. % ===== Example. Using RTreeClassifier for features matching ===== \begin{lstlisting} CvMemStorage* storage = cvCreateMemStorage(0); CvSeq *objectKeypoints = 0, *objectDescriptors = 0; CvSeq *imageKeypoints = 0, *imageDescriptors = 0; CvSURFParams params = cvSURFParams(500, 1); cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors, storage, params ); cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors, storage, params ); cv::RTreeClassifier detector; int patch_width = cv::PATCH_SIZE; iint patch_height = cv::PATCH_SIZE; vector base_set; int i=0; CvSURFPoint* point; for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++) { point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i); base_set.push_back( cv::BaseKeypoint(point->pt.x,point->pt.y,train_image)); } //Detector training cv::RNG rng( cvGetTickCount() ); cv::PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3, -CV_PI/3,CV_PI/3); printf("RTree Classifier training...\n"); detector.train(base_set,rng,gen,24,cv::DEFAULT_DEPTH,2000, (int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS); printf("Done\n"); float* signature = new float[detector.original_num_classes()]; float* best_corr; int* best_corr_idx; if (imageKeypoints->total > 0) { best_corr = new float[imageKeypoints->total]; best_corr_idx = new int[imageKeypoints->total]; } for(i=0; i < imageKeypoints->total; i++) { point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i); int part_idx = -1; float prob = 0.0f; CvRect roi = cvRect((int)(point->pt.x) - patch_width/2, (int)(point->pt.y) - patch_height/2, patch_width, patch_height); cvSetImageROI(test_image, roi); roi = cvGetImageROI(test_image); if(roi.width != patch_width || roi.height != patch_height) { best_corr_idx[i] = part_idx; best_corr[i] = prob; } else { cvSetImageROI(test_image, roi); IplImage* roi_image = cvCreateImage(cvSize(roi.width, roi.height), test_image->depth, test_image->nChannels); cvCopy(test_image,roi_image); detector.getSignature(roi_image, signature); for (int j = 0; j< detector.original_num_classes();j++) { if (prob < signature[j]) { part_idx = j; prob = signature[j]; } } best_corr_idx[i] = part_idx; best_corr[i] = prob; if (roi_image) cvReleaseImage(&roi_image); } cvResetImageROI(test_image); } \end{lstlisting} \fi