/* slasv2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static real c_b3 = 2.f; static real c_b4 = 1.f; /* Subroutine */ int slasv2_(real *f, real *g, real *h__, real *ssmin, real * ssmax, real *snr, real *csr, real *snl, real *csl) { /* System generated locals */ real r__1; /* Builtin functions */ double sqrt(doublereal), r_sign(real *, real *); /* Local variables */ real a, d__, l, m, r__, s, t, fa, ga, ha, ft, gt, ht, mm, tt, clt, crt, slt, srt; integer pmax; real temp; logical swap; real tsign; logical gasmal; extern doublereal slamch_(char *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLASV2 computes the singular value decomposition of a 2-by-2 */ /* triangular matrix */ /* [ F G ] */ /* [ 0 H ]. */ /* On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the */ /* smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and */ /* right singular vectors for abs(SSMAX), giving the decomposition */ /* [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] */ /* [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. */ /* Arguments */ /* ========= */ /* F (input) REAL */ /* The (1,1) element of the 2-by-2 matrix. */ /* G (input) REAL */ /* The (1,2) element of the 2-by-2 matrix. */ /* H (input) REAL */ /* The (2,2) element of the 2-by-2 matrix. */ /* SSMIN (output) REAL */ /* abs(SSMIN) is the smaller singular value. */ /* SSMAX (output) REAL */ /* abs(SSMAX) is the larger singular value. */ /* SNL (output) REAL */ /* CSL (output) REAL */ /* The vector (CSL, SNL) is a unit left singular vector for the */ /* singular value abs(SSMAX). */ /* SNR (output) REAL */ /* CSR (output) REAL */ /* The vector (CSR, SNR) is a unit right singular vector for the */ /* singular value abs(SSMAX). */ /* Further Details */ /* =============== */ /* Any input parameter may be aliased with any output parameter. */ /* Barring over/underflow and assuming a guard digit in subtraction, all */ /* output quantities are correct to within a few units in the last */ /* place (ulps). */ /* In IEEE arithmetic, the code works correctly if one matrix element is */ /* infinite. */ /* Overflow will not occur unless the largest singular value itself */ /* overflows or is within a few ulps of overflow. (On machines with */ /* partial overflow, like the Cray, overflow may occur if the largest */ /* singular value is within a factor of 2 of overflow.) */ /* Underflow is harmless if underflow is gradual. Otherwise, results */ /* may correspond to a matrix modified by perturbations of size near */ /* the underflow threshold. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ ft = *f; fa = dabs(ft); ht = *h__; ha = dabs(*h__); /* PMAX points to the maximum absolute element of matrix */ /* PMAX = 1 if F largest in absolute values */ /* PMAX = 2 if G largest in absolute values */ /* PMAX = 3 if H largest in absolute values */ pmax = 1; swap = ha > fa; if (swap) { pmax = 3; temp = ft; ft = ht; ht = temp; temp = fa; fa = ha; ha = temp; /* Now FA .ge. HA */ } gt = *g; ga = dabs(gt); if (ga == 0.f) { /* Diagonal matrix */ *ssmin = ha; *ssmax = fa; clt = 1.f; crt = 1.f; slt = 0.f; srt = 0.f; } else { gasmal = TRUE_; if (ga > fa) { pmax = 2; if (fa / ga < slamch_("EPS")) { /* Case of very large GA */ gasmal = FALSE_; *ssmax = ga; if (ha > 1.f) { *ssmin = fa / (ga / ha); } else { *ssmin = fa / ga * ha; } clt = 1.f; slt = ht / gt; srt = 1.f; crt = ft / gt; } } if (gasmal) { /* Normal case */ d__ = fa - ha; if (d__ == fa) { /* Copes with infinite F or H */ l = 1.f; } else { l = d__ / fa; } /* Note that 0 .le. L .le. 1 */ m = gt / ft; /* Note that abs(M) .le. 1/macheps */ t = 2.f - l; /* Note that T .ge. 1 */ mm = m * m; tt = t * t; s = sqrt(tt + mm); /* Note that 1 .le. S .le. 1 + 1/macheps */ if (l == 0.f) { r__ = dabs(m); } else { r__ = sqrt(l * l + mm); } /* Note that 0 .le. R .le. 1 + 1/macheps */ a = (s + r__) * .5f; /* Note that 1 .le. A .le. 1 + abs(M) */ *ssmin = ha / a; *ssmax = fa * a; if (mm == 0.f) { /* Note that M is very tiny */ if (l == 0.f) { t = r_sign(&c_b3, &ft) * r_sign(&c_b4, >); } else { t = gt / r_sign(&d__, &ft) + m / t; } } else { t = (m / (s + t) + m / (r__ + l)) * (a + 1.f); } l = sqrt(t * t + 4.f); crt = 2.f / l; srt = t / l; clt = (crt + srt * m) / a; slt = ht / ft * srt / a; } } if (swap) { *csl = srt; *snl = crt; *csr = slt; *snr = clt; } else { *csl = clt; *snl = slt; *csr = crt; *snr = srt; } /* Correct signs of SSMAX and SSMIN */ if (pmax == 1) { tsign = r_sign(&c_b4, csr) * r_sign(&c_b4, csl) * r_sign(&c_b4, f); } if (pmax == 2) { tsign = r_sign(&c_b4, snr) * r_sign(&c_b4, csl) * r_sign(&c_b4, g); } if (pmax == 3) { tsign = r_sign(&c_b4, snr) * r_sign(&c_b4, snl) * r_sign(&c_b4, h__); } *ssmax = r_sign(ssmax, &tsign); r__1 = tsign * r_sign(&c_b4, f) * r_sign(&c_b4, h__); *ssmin = r_sign(ssmin, &r__1); return 0; /* End of SLASV2 */ } /* slasv2_ */