/* dpotrs.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static doublereal c_b9 = 1.; /* Subroutine */ int dpotrs_(char *uplo, integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *b, integer *ldb, integer * info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ extern logical lsame_(char *, char *); extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DPOTRS solves a system of linear equations A*X = B with a symmetric */ /* positive definite matrix A using the Cholesky factorization */ /* A = U**T*U or A = L*L**T computed by DPOTRF. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrix B. NRHS >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The triangular factor U or L from the Cholesky factorization */ /* A = U**T*U or A = L*L**T, as computed by DPOTRF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* On entry, the right hand side matrix B. */ /* On exit, the solution matrix X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("DPOTRS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { return 0; } if (upper) { /* Solve A*X = B where A = U'*U. */ /* Solve U'*X = B, overwriting B with X. */ dtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b9, &a[ a_offset], lda, &b[b_offset], ldb); /* Solve U*X = B, overwriting B with X. */ dtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b9, & a[a_offset], lda, &b[b_offset], ldb); } else { /* Solve A*X = B where A = L*L'. */ /* Solve L*X = B, overwriting B with X. */ dtrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b9, & a[a_offset], lda, &b[b_offset], ldb); /* Solve L'*X = B, overwriting B with X. */ dtrsm_("Left", "Lower", "Transpose", "Non-unit", n, nrhs, &c_b9, &a[ a_offset], lda, &b[b_offset], ldb); } return 0; /* End of DPOTRS */ } /* dpotrs_ */