// Copyright 2010 Google Inc. All Rights Reserved. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // inline YUV<->RGB conversion function // // The exact naming is Y'CbCr, following the ITU-R BT.601 standard. // More information at: http://en.wikipedia.org/wiki/YCbCr // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 // We use 16bit fixed point operations for RGB->YUV conversion. // // For the Y'CbCr to RGB conversion, the BT.601 specification reads: // R = 1.164 * (Y-16) + 1.596 * (V-128) // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128) // B = 1.164 * (Y-16) + 2.018 * (U-128) // where Y is in the [16,235] range, and U/V in the [16,240] range. // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table. // So in this case the formulae should be read as: // R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624 // G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624 // B = 1.164 * [Y + 1.733 * (U-128)] - 18.624 // once factorized. Here too, 16bit fixed precision is used. // // Author: Skal (pascal.massimino@gmail.com) #ifndef WEBP_DSP_YUV_H_ #define WEBP_DSP_YUV_H_ #include "../dec/decode_vp8.h" // Define the following to use the LUT-based code: #define WEBP_YUV_USE_TABLE #if defined(WEBP_EXPERIMENTAL_FEATURES) // Do NOT activate this feature for real compression. This is only experimental! // This flag is for comparison purpose against JPEG's "YUVj" natural colorspace. // This colorspace is close to Rec.601's Y'CbCr model with the notable // difference of allowing larger range for luma/chroma. // See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its // difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion // #define USE_YUVj #endif //------------------------------------------------------------------------------ // YUV -> RGB conversion #if defined(__cplusplus) || defined(c_plusplus) extern "C" { #endif enum { YUV_FIX = 16, // fixed-point precision YUV_HALF = 1 << (YUV_FIX - 1), YUV_MASK = (256 << YUV_FIX) - 1, YUV_RANGE_MIN = -227, // min value of r/g/b output YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output }; #ifdef WEBP_YUV_USE_TABLE extern int16_t VP8kVToR[256], VP8kUToB[256]; extern int32_t VP8kVToG[256], VP8kUToG[256]; extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN]; extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN]; static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgb) { const int r_off = VP8kVToR[v]; const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; const int b_off = VP8kUToB[u]; rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN]; rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN]; } static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgr) { const int r_off = VP8kVToR[v]; const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; const int b_off = VP8kUToB[u]; bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN]; bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN]; } static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgb) { const int r_off = VP8kVToR[v]; const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; const int b_off = VP8kUToB[u]; const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) | (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3)); #ifdef WEBP_SWAP_16BIT_CSP rgb[0] = gb; rgb[1] = rg; #else rgb[0] = rg; rgb[1] = gb; #endif } static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, uint8_t* const argb) { const int r_off = VP8kVToR[v]; const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; const int b_off = VP8kUToB[u]; const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f; #ifdef WEBP_SWAP_16BIT_CSP argb[0] = ba; argb[1] = rg; #else argb[0] = rg; argb[1] = ba; #endif } #else // Table-free version (slower on x86) // These constants are 16b fixed-point version of ITU-R BT.601 constants #define kYScale 76309 // 1.164 = 255 / 219 #define kVToR 104597 // 1.596 = 255 / 112 * 0.701 #define kUToG 25674 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587 #define kVToG 53278 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587 #define kUToB 132201 // 2.018 = 255 / 112 * 0.886 #define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF) #define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF) #define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF) static WEBP_INLINE uint8_t VP8Clip8(int v) { return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> YUV_FIX) : (v < 0) ? 0u : 255u; } static WEBP_INLINE uint8_t VP8ClipN(int v, int N) { // clip to N bits return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> (YUV_FIX + (8 - N))) : (v < 0) ? 0u : (255u >> (8 - N)); } static WEBP_INLINE int VP8YUVToR(int y, int v) { return kYScale * y + kVToR * v + kRCst; } static WEBP_INLINE int VP8YUVToG(int y, int u, int v) { return kYScale * y - kUToG * u - kVToG * v + kGCst; } static WEBP_INLINE int VP8YUVToB(int y, int u) { return kYScale * y + kUToB * u + kBCst; } static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgb) { rgb[0] = VP8Clip8(VP8YUVToR(y, v)); rgb[1] = VP8Clip8(VP8YUVToG(y, u, v)); rgb[2] = VP8Clip8(VP8YUVToB(y, u)); } static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgr) { bgr[0] = VP8Clip8(VP8YUVToB(y, u)); bgr[1] = VP8Clip8(VP8YUVToG(y, u, v)); bgr[2] = VP8Clip8(VP8YUVToR(y, v)); } static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgb) { const int r = VP8Clip8(VP8YUVToR(y, u)); const int g = VP8ClipN(VP8YUVToG(y, u, v), 6); const int b = VP8ClipN(VP8YUVToB(y, v), 5); const uint8_t rg = (r & 0xf8) | (g >> 3); const uint8_t gb = (g << 5) | b; #ifdef WEBP_SWAP_16BIT_CSP rgb[0] = gb; rgb[1] = rg; #else rgb[0] = rg; rgb[1] = gb; #endif } static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, uint8_t* const argb) { const int r = VP8Clip8(VP8YUVToR(y, u)); const int g = VP8ClipN(VP8YUVToG(y, u, v), 4); const int b = VP8Clip8(VP8YUVToB(y, v)); const uint8_t rg = (r & 0xf0) | g; const uint8_t ba = b | 0x0f; // overwrite the lower 4 bits #ifdef WEBP_SWAP_16BIT_CSP argb[0] = ba; argb[1] = rg; #else argb[0] = rg; argb[1] = ba; #endif } #endif // WEBP_YUV_USE_TABLE static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, uint8_t* const argb) { argb[0] = 0xff; VP8YuvToRgb(y, u, v, argb + 1); } static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgra) { VP8YuvToBgr(y, u, v, bgra); bgra[3] = 0xff; } static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgba) { VP8YuvToRgb(y, u, v, rgba); rgba[3] = 0xff; } // Must be called before everything, to initialize the tables. void VP8YUVInit(void); //------------------------------------------------------------------------------ // RGB -> YUV conversion static WEBP_INLINE int VP8ClipUV(int v) { v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2); return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255; } #ifndef USE_YUVj static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX); const int luma = 16839 * r + 33059 * g + 6420 * b; return (luma + kRound) >> YUV_FIX; // no need to clip } static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { const int u = -9719 * r - 19081 * g + 28800 * b; return VP8ClipUV(u); } static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { const int v = +28800 * r - 24116 * g - 4684 * b; return VP8ClipUV(v); } #else // This JPEG-YUV colorspace, only for comparison! // These are also 16-bit precision coefficients from Rec.601, but with full // [0..255] output range. static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { const int kRound = (1 << (YUV_FIX - 1)); const int luma = 19595 * r + 38470 * g + 7471 * b; return (luma + kRound) >> YUV_FIX; // no need to clip } static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { const int u = -11058 * r - 21710 * g + 32768 * b; return VP8ClipUV(u); } static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { const int v = 32768 * r - 27439 * g - 5329 * b; return VP8ClipUV(v); } #endif // USE_YUVj #if defined(__cplusplus) || defined(c_plusplus) } // extern "C" #endif #endif /* WEBP_DSP_YUV_H_ */