/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace std; class CV_SubdivTest : public cvtest::BaseTest { public: CV_SubdivTest(); ~CV_SubdivTest(); void clear(); protected: int read_params( CvFileStorage* fs ); int prepare_test_case( int test_case_idx ); int validate_test_results( int test_case_idx ); void run_func(); int min_log_img_size, max_log_img_size; CvSize img_size; int min_log_point_count; int max_log_point_count; int point_count; CvSubdiv2D* subdiv; CvMemStorage* storage; }; CV_SubdivTest::CV_SubdivTest() { test_case_count = 100; min_log_point_count = 1; max_log_point_count = 10; min_log_img_size = 1; max_log_img_size = 10; storage = 0; } CV_SubdivTest::~CV_SubdivTest() { clear(); } void CV_SubdivTest::clear() { cvtest::BaseTest::clear(); cvReleaseMemStorage( &storage ); } int CV_SubdivTest::read_params( CvFileStorage* fs ) { int code = cvtest::BaseTest::read_params( fs ); int t; if( code < 0 ) return code; test_case_count = cvReadInt( find_param( fs, "test_case_count" ), test_case_count ); min_log_point_count = cvReadInt( find_param( fs, "min_log_point_count" ), min_log_point_count ); max_log_point_count = cvReadInt( find_param( fs, "max_log_point_count" ), max_log_point_count ); min_log_img_size = cvReadInt( find_param( fs, "min_log_img_size" ), min_log_img_size ); max_log_img_size = cvReadInt( find_param( fs, "max_log_img_size" ), max_log_img_size ); min_log_point_count = cvtest::clipInt( min_log_point_count, 1, 10 ); max_log_point_count = cvtest::clipInt( max_log_point_count, 1, 10 ); if( min_log_point_count > max_log_point_count ) CV_SWAP( min_log_point_count, max_log_point_count, t ); min_log_img_size = cvtest::clipInt( min_log_img_size, 1, 10 ); max_log_img_size = cvtest::clipInt( max_log_img_size, 1, 10 ); if( min_log_img_size > max_log_img_size ) CV_SWAP( min_log_img_size, max_log_img_size, t ); return 0; } int CV_SubdivTest::prepare_test_case( int test_case_idx ) { RNG& rng = ts->get_rng(); int code = cvtest::BaseTest::prepare_test_case( test_case_idx ); if( code < 0 ) return code; clear(); point_count = cvRound(exp((cvtest::randReal(rng)* (max_log_point_count - min_log_point_count) + min_log_point_count)*CV_LOG2)); img_size.width = cvRound(exp((cvtest::randReal(rng)* (max_log_img_size - min_log_img_size) + min_log_img_size)*CV_LOG2)); img_size.height = cvRound(exp((cvtest::randReal(rng)* (max_log_img_size - min_log_img_size) + min_log_img_size)*CV_LOG2)); storage = cvCreateMemStorage( 1 << 10 ); return 1; } void CV_SubdivTest::run_func() { } static inline double sqdist( CvPoint2D32f pt1, CvPoint2D32f pt2 ) { double dx = pt1.x - pt2.x; double dy = pt1.y - pt2.y; return dx*dx + dy*dy; } static int subdiv2DCheck( CvSubdiv2D* subdiv ) { int i, j, total = subdiv->edges->total; CV_Assert( subdiv != 0 ); for( i = 0; i < total; i++ ) { CvQuadEdge2D* edge = (CvQuadEdge2D*)cvGetSetElem(subdiv->edges,i); if( edge && CV_IS_SET_ELEM( edge )) { for( j = 0; j < 4; j++ ) { CvSubdiv2DEdge e = (CvSubdiv2DEdge)edge + j; CvSubdiv2DEdge o_next = cvSubdiv2DNextEdge(e); CvSubdiv2DEdge o_prev = cvSubdiv2DGetEdge(e, CV_PREV_AROUND_ORG ); CvSubdiv2DEdge d_prev = cvSubdiv2DGetEdge(e, CV_PREV_AROUND_DST ); CvSubdiv2DEdge d_next = cvSubdiv2DGetEdge(e, CV_NEXT_AROUND_DST ); // check points if( cvSubdiv2DEdgeOrg(e) != cvSubdiv2DEdgeOrg(o_next)) return 0; if( cvSubdiv2DEdgeOrg(e) != cvSubdiv2DEdgeOrg(o_prev)) return 0; if( cvSubdiv2DEdgeDst(e) != cvSubdiv2DEdgeDst(d_next)) return 0; if( cvSubdiv2DEdgeDst(e) != cvSubdiv2DEdgeDst(d_prev)) return 0; if( j % 2 == 0 ) { if( cvSubdiv2DEdgeDst(o_next) != cvSubdiv2DEdgeOrg(d_prev)) return 0; if( cvSubdiv2DEdgeDst(o_prev) != cvSubdiv2DEdgeOrg(d_next)) return 0; if( cvSubdiv2DGetEdge(cvSubdiv2DGetEdge(cvSubdiv2DGetEdge( e,CV_NEXT_AROUND_LEFT),CV_NEXT_AROUND_LEFT),CV_NEXT_AROUND_LEFT) != e ) return 0; if( cvSubdiv2DGetEdge(cvSubdiv2DGetEdge(cvSubdiv2DGetEdge( e,CV_NEXT_AROUND_RIGHT),CV_NEXT_AROUND_RIGHT),CV_NEXT_AROUND_RIGHT) != e) return 0; } } } } return 1; } // the whole testing is done here, run_func() is not utilized in this test int CV_SubdivTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; RNG& rng = ts->get_rng(); int j, k, real_count = point_count; double xrange = img_size.width*(1 - FLT_EPSILON); double yrange = img_size.height*(1 - FLT_EPSILON); subdiv = cvCreateSubdivDelaunay2D( cvRect( 0, 0, img_size.width, img_size.height ), storage ); CvSeq* seq = cvCreateSeq( 0, sizeof(*seq), sizeof(CvPoint2D32f), storage ); CvSeqWriter writer; cvStartAppendToSeq( seq, &writer ); // insert random points for( j = 0; j < point_count; j++ ) { CvPoint2D32f pt; CvSubdiv2DPoint* point; pt.x = (float)(cvtest::randReal(rng)*xrange); pt.y = (float)(cvtest::randReal(rng)*yrange); CvSubdiv2DPointLocation loc = cvSubdiv2DLocate( subdiv, pt, 0, &point ); if( loc == CV_PTLOC_VERTEX ) { int index = cvSeqElemIdx( (CvSeq*)subdiv, point ); CvPoint2D32f* pt1; cvFlushSeqWriter( &writer ); pt1 = (CvPoint2D32f*)cvGetSeqElem( seq, index - 3 ); if( !pt1 || fabs(pt1->x - pt.x) > FLT_EPSILON || fabs(pt1->y - pt.y) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "The point #%d: (%.1f,%.1f) is said to coinside with a subdivision vertex, " "however it could be found in a sequence of inserted points\n", j, pt.x, pt.y ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } real_count--; } point = cvSubdivDelaunay2DInsert( subdiv, pt ); if( point->pt.x != pt.x || point->pt.y != pt.y ) { ts->printf( cvtest::TS::LOG, "The point #%d: (%.1f,%.1f) has been incorrectly added\n", j, pt.x, pt.y ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } if( (j + 1) % 10 == 0 || j == point_count - 1 ) { if( !subdiv2DCheck( subdiv )) { ts->printf( cvtest::TS::LOG, "Subdivision consistency check failed after inserting the point #%d\n", j ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } } if( loc != CV_PTLOC_VERTEX ) { CV_WRITE_SEQ_ELEM( pt, writer ); } } if( code < 0 ) goto _exit_; cvCalcSubdivVoronoi2D( subdiv ); seq = cvEndWriteSeq( &writer ); if( !subdiv2DCheck( subdiv )) { ts->printf( cvtest::TS::LOG, "The subdivision failed consistency check after building the Voronoi tesselation\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } for( j = 0; j < MAX((point_count - 5)/10 + 5, 10); j++ ) { CvPoint2D32f pt; double minDistance; pt.x = (float)(cvtest::randReal(rng)*xrange); pt.y = (float)(cvtest::randReal(rng)*yrange); CvSubdiv2DPoint* point = cvFindNearestPoint2D( subdiv, pt ); CvSeqReader reader; if( !point ) { ts->printf( cvtest::TS::LOG, "There is no nearest point (?!) for the point (%.1f, %.1f) in the subdivision\n", pt.x, pt.y ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } cvStartReadSeq( seq, &reader ); minDistance = sqdist( pt, point->pt ); for( k = 0; k < seq->total; k++ ) { CvPoint2D32f ptt; CV_READ_SEQ_ELEM( ptt, reader ); double distance = sqdist( pt, ptt ); if( minDistance > distance && sqdist(ptt, point->pt) > FLT_EPSILON*1000 ) { ts->printf( cvtest::TS::LOG, "The triangulation vertex (%.3f,%.3f) was said to be nearest to (%.3f,%.3f),\n" "whereas another vertex (%.3f,%.3f) is closer\n", point->pt.x, point->pt.y, pt.x, pt.y, ptt.x, ptt.y ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } } } _exit_: if( code < 0 ) ts->set_failed_test_info( code ); return code; } TEST(Imgproc_Subdiv, correctness) { CV_SubdivTest test; test.safe_run(); } /* End of file. */