/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace std; class CV_TrackBaseTest : public cvtest::BaseTest { public: CV_TrackBaseTest(); virtual ~CV_TrackBaseTest(); void clear(); protected: int read_params( CvFileStorage* fs ); void run_func(void); int prepare_test_case( int test_case_idx ); int validate_test_results( int test_case_idx ); void generate_object(); int min_log_size, max_log_size; CvMat* img; CvBox2D box0; CvSize img_size; CvTermCriteria criteria; int img_type; }; CV_TrackBaseTest::CV_TrackBaseTest() { img = 0; test_case_count = 100; min_log_size = 5; max_log_size = 8; } CV_TrackBaseTest::~CV_TrackBaseTest() { clear(); } void CV_TrackBaseTest::clear() { cvReleaseMat( &img ); cvtest::BaseTest::clear(); } int CV_TrackBaseTest::read_params( CvFileStorage* fs ) { int code = cvtest::BaseTest::read_params( fs ); if( code < 0 ) return code; test_case_count = cvReadInt( find_param( fs, "test_case_count" ), test_case_count ); min_log_size = cvReadInt( find_param( fs, "min_log_size" ), min_log_size ); max_log_size = cvReadInt( find_param( fs, "max_log_size" ), max_log_size ); min_log_size = cvtest::clipInt( min_log_size, 1, 10 ); max_log_size = cvtest::clipInt( max_log_size, 1, 10 ); if( min_log_size > max_log_size ) { int t; CV_SWAP( min_log_size, max_log_size, t ); } return 0; } void CV_TrackBaseTest::generate_object() { int x, y; double cx = box0.center.x; double cy = box0.center.y; double width = box0.size.width*0.5; double height = box0.size.height*0.5; double angle = box0.angle*CV_PI/180.; double a = sin(angle), b = -cos(angle); double inv_ww = 1./(width*width), inv_hh = 1./(height*height); img = cvCreateMat( img_size.height, img_size.width, img_type ); cvZero( img ); // use the straightforward algorithm: for every pixel check if it is inside the ellipse for( y = 0; y < img_size.height; y++ ) { uchar* ptr = img->data.ptr + img->step*y; float* fl = (float*)ptr; double x_ = (y - cy)*b, y_ = (y - cy)*a; for( x = 0; x < img_size.width; x++ ) { double x1 = (x - cx)*a - x_; double y1 = (x - cx)*b + y_; if( x1*x1*inv_hh + y1*y1*inv_ww <= 1. ) { if( img_type == CV_8U ) ptr[x] = (uchar)1; else fl[x] = (float)1.f; } } } } int CV_TrackBaseTest::prepare_test_case( int test_case_idx ) { RNG& rng = ts->get_rng(); cvtest::BaseTest::prepare_test_case( test_case_idx ); float m; clear(); box0.size.width = (float)exp((cvtest::randReal(rng) * (max_log_size - min_log_size) + min_log_size)*CV_LOG2); box0.size.height = (float)exp((cvtest::randReal(rng) * (max_log_size - min_log_size) + min_log_size)*CV_LOG2); box0.angle = (float)(cvtest::randReal(rng)*180.); if( box0.size.width > box0.size.height ) { float t; CV_SWAP( box0.size.width, box0.size.height, t ); } m = MAX( box0.size.width, box0.size.height ); img_size.width = cvRound(cvtest::randReal(rng)*m*0.5 + m + 1); img_size.height = cvRound(cvtest::randReal(rng)*m*0.5 + m + 1); img_type = cvtest::randInt(rng) % 2 ? CV_32F : CV_8U; img_type = CV_8U; box0.center.x = (float)(img_size.width*0.5 + (cvtest::randReal(rng)-0.5)*(img_size.width - m)); box0.center.y = (float)(img_size.height*0.5 + (cvtest::randReal(rng)-0.5)*(img_size.height - m)); criteria = cvTermCriteria( CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 0.1 ); generate_object(); return 1; } void CV_TrackBaseTest::run_func(void) { } int CV_TrackBaseTest::validate_test_results( int /*test_case_idx*/ ) { return 0; } ///////////////////////// CamShift ////////////////////////////// class CV_CamShiftTest : public CV_TrackBaseTest { public: CV_CamShiftTest(); protected: void run_func(void); int prepare_test_case( int test_case_idx ); int validate_test_results( int test_case_idx ); void generate_object(); CvBox2D box; CvRect init_rect; CvConnectedComp comp; int area0; }; CV_CamShiftTest::CV_CamShiftTest() { } int CV_CamShiftTest::prepare_test_case( int test_case_idx ) { RNG& rng = ts->get_rng(); double m; int code = CV_TrackBaseTest::prepare_test_case( test_case_idx ); int i, area; if( code <= 0 ) return code; area0 = cvCountNonZero(img); for(i = 0; i < 100; i++) { CvMat temp; m = MAX(box0.size.width,box0.size.height)*0.8; init_rect.x = cvFloor(box0.center.x - m*(0.45 + cvtest::randReal(rng)*0.2)); init_rect.y = cvFloor(box0.center.y - m*(0.45 + cvtest::randReal(rng)*0.2)); init_rect.width = cvCeil(box0.center.x + m*(0.45 + cvtest::randReal(rng)*0.2) - init_rect.x); init_rect.height = cvCeil(box0.center.y + m*(0.45 + cvtest::randReal(rng)*0.2) - init_rect.y); if( init_rect.x < 0 || init_rect.y < 0 || init_rect.x + init_rect.width >= img_size.width || init_rect.y + init_rect.height >= img_size.height ) continue; cvGetSubRect( img, &temp, init_rect ); area = cvCountNonZero( &temp ); if( area >= 0.1*area0 ) break; } return i < 100 ? code : 0; } void CV_CamShiftTest::run_func(void) { cvCamShift( img, init_rect, criteria, &comp, &box ); } int CV_CamShiftTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; double m = MAX(box0.size.width, box0.size.height), delta; double diff_angle; if( cvIsNaN(box.size.width) || cvIsInf(box.size.width) || box.size.width <= 0 || cvIsNaN(box.size.height) || cvIsInf(box.size.height) || box.size.height <= 0 || cvIsNaN(box.center.x) || cvIsInf(box.center.x) || cvIsNaN(box.center.y) || cvIsInf(box.center.y) || cvIsNaN(box.angle) || cvIsInf(box.angle) || box.angle < -180 || box.angle > 180 || cvIsNaN(comp.area) || cvIsInf(comp.area) || comp.area <= 0 ) { ts->printf( cvtest::TS::LOG, "Invalid CvBox2D or CvConnectedComp was returned by cvCamShift\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } box.angle = (float)(180 - box.angle); if( fabs(box.size.width - box0.size.width) > box0.size.width*0.2 || fabs(box.size.height - box0.size.height) > box0.size.height*0.3 ) { ts->printf( cvtest::TS::LOG, "Incorrect CvBox2D size (=%.1f x %.1f, should be %.1f x %.1f)\n", box.size.width, box.size.height, box0.size.width, box0.size.height ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( fabs(box.center.x - box0.center.x) > m*0.1 || fabs(box.center.y - box0.center.y) > m*0.1 ) { ts->printf( cvtest::TS::LOG, "Incorrect CvBox2D position (=(%.1f, %.1f), should be (%.1f, %.1f))\n", box.center.x, box.center.y, box0.center.x, box0.center.y ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( box.angle < 0 ) box.angle += 180; diff_angle = fabs(box0.angle - box.angle); diff_angle = MIN( diff_angle, fabs(box0.angle - box.angle + 180)); if( fabs(diff_angle) > 30 && box0.size.height > box0.size.width*1.2 ) { ts->printf( cvtest::TS::LOG, "Incorrect CvBox2D angle (=%1.f, should be %1.f)\n", box.angle, box0.angle ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } delta = m*0.7; if( comp.rect.x < box0.center.x - delta || comp.rect.y < box0.center.y - delta || comp.rect.x + comp.rect.width > box0.center.x + delta || comp.rect.y + comp.rect.height > box0.center.y + delta ) { ts->printf( cvtest::TS::LOG, "Incorrect CvConnectedComp ((%d,%d,%d,%d) is not within (%.1f,%.1f,%.1f,%.1f))\n", comp.rect.x, comp.rect.y, comp.rect.x + comp.rect.width, comp.rect.y + comp.rect.height, box0.center.x - delta, box0.center.y - delta, box0.center.x + delta, box0.center.y + delta ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( fabs(comp.area - area0) > area0*0.15 ) { ts->printf( cvtest::TS::LOG, "Incorrect CvConnectedComp area (=%.1f, should be %d)\n", comp.area, area0 ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } _exit_: if( code < 0 ) { #if defined _DEBUG && defined WIN32 IplImage* dst = cvCreateImage( img_size, 8, 3 ); cvNamedWindow( "test", 1 ); cvCmpS( img, 0, img, CV_CMP_GT ); cvCvtColor( img, dst, CV_GRAY2BGR ); cvRectangle( dst, cvPoint(init_rect.x, init_rect.y), cvPoint(init_rect.x + init_rect.width, init_rect.y + init_rect.height), CV_RGB(255,0,0), 3, 8, 0 ); cvEllipseBox( dst, box, CV_RGB(0,255,0), 3, 8, 0 ); cvShowImage( "test", dst ); cvReleaseImage( &dst ); cvWaitKey(); #endif ts->set_failed_test_info( code ); } return code; } ///////////////////////// MeanShift ////////////////////////////// class CV_MeanShiftTest : public CV_TrackBaseTest { public: CV_MeanShiftTest(); protected: void run_func(void); int prepare_test_case( int test_case_idx ); int validate_test_results( int test_case_idx ); void generate_object(); CvRect init_rect; CvConnectedComp comp; int area0, area; }; CV_MeanShiftTest::CV_MeanShiftTest() { } int CV_MeanShiftTest::prepare_test_case( int test_case_idx ) { RNG& rng = ts->get_rng(); double m; int code = CV_TrackBaseTest::prepare_test_case( test_case_idx ); int i; if( code <= 0 ) return code; area0 = cvCountNonZero(img); for(i = 0; i < 100; i++) { CvMat temp; m = (box0.size.width + box0.size.height)*0.5; init_rect.x = cvFloor(box0.center.x - m*(0.4 + cvtest::randReal(rng)*0.2)); init_rect.y = cvFloor(box0.center.y - m*(0.4 + cvtest::randReal(rng)*0.2)); init_rect.width = cvCeil(box0.center.x + m*(0.4 + cvtest::randReal(rng)*0.2) - init_rect.x); init_rect.height = cvCeil(box0.center.y + m*(0.4 + cvtest::randReal(rng)*0.2) - init_rect.y); if( init_rect.x < 0 || init_rect.y < 0 || init_rect.x + init_rect.width >= img_size.width || init_rect.y + init_rect.height >= img_size.height ) continue; cvGetSubRect( img, &temp, init_rect ); area = cvCountNonZero( &temp ); if( area >= 0.5*area0 ) break; } return i < 100 ? code : 0; } void CV_MeanShiftTest::run_func(void) { cvMeanShift( img, init_rect, criteria, &comp ); } int CV_MeanShiftTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; CvPoint2D32f c; double m = MAX(box0.size.width, box0.size.height), delta; if( cvIsNaN(comp.area) || cvIsInf(comp.area) || comp.area <= 0 ) { ts->printf( cvtest::TS::LOG, "Invalid CvConnectedComp was returned by cvMeanShift\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } c.x = (float)(comp.rect.x + comp.rect.width*0.5); c.y = (float)(comp.rect.y + comp.rect.height*0.5); if( fabs(c.x - box0.center.x) > m*0.1 || fabs(c.y - box0.center.y) > m*0.1 ) { ts->printf( cvtest::TS::LOG, "Incorrect CvBox2D position (=(%.1f, %.1f), should be (%.1f, %.1f))\n", c.x, c.y, box0.center.x, box0.center.y ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } delta = m*0.7; if( comp.rect.x < box0.center.x - delta || comp.rect.y < box0.center.y - delta || comp.rect.x + comp.rect.width > box0.center.x + delta || comp.rect.y + comp.rect.height > box0.center.y + delta ) { ts->printf( cvtest::TS::LOG, "Incorrect CvConnectedComp ((%d,%d,%d,%d) is not within (%.1f,%.1f,%.1f,%.1f))\n", comp.rect.x, comp.rect.y, comp.rect.x + comp.rect.width, comp.rect.y + comp.rect.height, box0.center.x - delta, box0.center.y - delta, box0.center.x + delta, box0.center.y + delta ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( fabs((double)(comp.area - area0)) > fabs((double)(area - area0)) + area0*0.05 ) { ts->printf( cvtest::TS::LOG, "Incorrect CvConnectedComp area (=%.1f, should be %d)\n", comp.area, area0 ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } _exit_: if( code < 0 ) { #if defined _DEBUG && defined WIN32 IplImage* dst = cvCreateImage( img_size, 8, 3 ); cvNamedWindow( "test", 1 ); cvCmpS( img, 0, img, CV_CMP_GT ); cvCvtColor( img, dst, CV_GRAY2BGR ); cvRectangle( dst, cvPoint(init_rect.x, init_rect.y), cvPoint(init_rect.x + init_rect.width, init_rect.y + init_rect.height), CV_RGB(255,0,0), 3, 8, 0 ); cvRectangle( dst, cvPoint(comp.rect.x, comp.rect.y), cvPoint(comp.rect.x + comp.rect.width, comp.rect.y + comp.rect.height), CV_RGB(0,255,0), 3, 8, 0 ); cvShowImage( "test", dst ); cvReleaseImage( &dst ); cvWaitKey(); #endif ts->set_failed_test_info( code ); } return code; } TEST(Video_CAMShift, accuracy) { CV_CamShiftTest test; test.safe_run(); } TEST(Video_MeanShift, accuracy) { CV_MeanShiftTest test; test.safe_run(); } /* End of file. */