/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other oclMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#ifdef HAVE_OPENCL
namespace
{
    /////////////////////////////////////////////////////////////////////////////////////////////////
    // BruteForceMatcher
    CV_ENUM(DistType, BruteForceMatcher_OCL_base::L1Dist,
                      BruteForceMatcher_OCL_base::L2Dist,
                      BruteForceMatcher_OCL_base::HammingDist)
    IMPLEMENT_PARAM_CLASS(DescriptorSize, int)
    PARAM_TEST_CASE(BruteForceMatcher, DistType, DescriptorSize)
    {
        cv::ocl::BruteForceMatcher_OCL_base::DistType distType;
        int normCode;
        int dim;

        int queryDescCount;
        int countFactor;

        cv::Mat query, train;

        virtual void SetUp()
        {
            distType = (cv::ocl::BruteForceMatcher_OCL_base::DistType)(int)GET_PARAM(0);
            dim = GET_PARAM(1);

            queryDescCount = 300; // must be even number because we split train data in some cases in two
            countFactor = 4; // do not change it

            cv::RNG &rng = cvtest::TS::ptr()->get_rng();

            cv::Mat queryBuf, trainBuf;

            // Generate query descriptors randomly.
            // Descriptor vector elements are integer values.
            queryBuf.create(queryDescCount, dim, CV_32SC1);
            rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3));
            queryBuf.convertTo(queryBuf, CV_32FC1);

            // Generate train decriptors as follows:
            // copy each query descriptor to train set countFactor times
            // and perturb some one element of the copied descriptors in
            // in ascending order. General boundaries of the perturbation
            // are (0.f, 1.f).
            trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1);
            float step = 1.f / countFactor;
            for (int qIdx = 0; qIdx < queryDescCount; qIdx++)
            {
                cv::Mat queryDescriptor = queryBuf.row(qIdx);
                for (int c = 0; c < countFactor; c++)
                {
                    int tIdx = qIdx * countFactor + c;
                    cv::Mat trainDescriptor = trainBuf.row(tIdx);
                    queryDescriptor.copyTo(trainDescriptor);
                    int elem = rng(dim);
                    float diff = rng.uniform(step * c, step * (c + 1));
                    trainDescriptor.at<float>(0, elem) += diff;
                }
            }

            queryBuf.convertTo(query, CV_32F);
            trainBuf.convertTo(train, CV_32F);
        }
    };

    TEST_P(BruteForceMatcher, Match_Single)
    {
        cv::ocl::BruteForceMatcher_OCL_base matcher(distType);

        std::vector<cv::DMatch> matches;
        matcher.match(cv::ocl::oclMat(query),  cv::ocl::oclMat(train),  matches);

        ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());

        int badCount = 0;
        for (size_t i = 0; i < matches.size(); i++)
        {
            cv::DMatch match = matches[i];
            if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
                badCount++;
        }

        ASSERT_EQ(0, badCount);
    }

    TEST_P(BruteForceMatcher, KnnMatch_2_Single)
    {
        const int knn = 2;

        cv::ocl::BruteForceMatcher_OCL_base matcher(distType);

        std::vector< std::vector<cv::DMatch> > matches;
        matcher.knnMatch(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches, knn);

        ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());

        int badCount = 0;
        for (size_t i = 0; i < matches.size(); i++)
        {
            if ((int)matches[i].size() != knn)
                badCount++;
            else
            {
                int localBadCount = 0;
                for (int k = 0; k < knn; k++)
                {
                    cv::DMatch match = matches[i][k];
                    if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
                        localBadCount++;
                }
                badCount += localBadCount > 0 ? 1 : 0;
            }
        }

        ASSERT_EQ(0, badCount);
    }

    TEST_P(BruteForceMatcher, RadiusMatch_Single)
    {
        float radius = 1.f / countFactor;

        cv::ocl::BruteForceMatcher_OCL_base matcher(distType);

        std::vector< std::vector<cv::DMatch> > matches;
        matcher.radiusMatch(cv::ocl::oclMat(query), cv::ocl::oclMat(train), matches, radius);

        ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());

        int badCount = 0;
        for (size_t i = 0; i < matches.size(); i++)
        {
            if ((int)matches[i].size() != 1)
            {
                badCount++;
            }
            else
            {
                cv::DMatch match = matches[i][0];
                if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
                    badCount++;
            }
        }

        ASSERT_EQ(0, badCount);
    }

    INSTANTIATE_TEST_CASE_P(OCL_Features2D, BruteForceMatcher,
        testing::Combine(
        testing::Values(
            DistType(cv::ocl::BruteForceMatcher_OCL_base::L1Dist),
            DistType(cv::ocl::BruteForceMatcher_OCL_base::L2Dist)/*,
            DistType(cv::ocl::BruteForceMatcher_OCL_base::HammingDist)*/
        ),
        testing::Values(
            DescriptorSize(57),
            DescriptorSize(64),
            DescriptorSize(83),
            DescriptorSize(128),
            DescriptorSize(179),
            DescriptorSize(256),
            DescriptorSize(304))
        )
    );
} // namespace
#endif