// Copyright 2012 Google Inc. All Rights Reserved. // // This code is licensed under the same terms as WebM: // Software License Agreement: http://www.webmproject.org/license/software/ // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ // ----------------------------------------------------------------------------- // // Author: Jyrki Alakuijala (jyrki@google.com) // #include #include #include #include "./backward_references.h" #include "./histogram.h" #include "../dsp/lossless.h" #include "../utils/color_cache.h" #include "../utils/utils.h" #define VALUES_IN_BYTE 256 #define HASH_BITS 18 #define HASH_SIZE (1 << HASH_BITS) #define HASH_MULTIPLIER (0xc6a4a7935bd1e995ULL) // 1M window (4M bytes) minus 120 special codes for short distances. #define WINDOW_SIZE ((1 << 20) - 120) // Bounds for the match length. #define MIN_LENGTH 2 #define MAX_LENGTH 4096 typedef struct { // Stores the most recently added position with the given hash value. int32_t hash_to_first_index_[HASH_SIZE]; // chain_[pos] stores the previous position with the same hash value // for every pixel in the image. int32_t* chain_; } HashChain; // ----------------------------------------------------------------------------- static const uint8_t plane_to_code_lut[128] = { 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117 }; static int DistanceToPlaneCode(int xsize, int dist) { const int yoffset = dist / xsize; const int xoffset = dist - yoffset * xsize; if (xoffset <= 8 && yoffset < 8) { return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; } else if (xoffset > xsize - 8 && yoffset < 7) { return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; } return dist + 120; } static WEBP_INLINE int FindMatchLength(const uint32_t* const array1, const uint32_t* const array2, const int max_limit) { int match_len = 0; while (match_len < max_limit && array1[match_len] == array2[match_len]) { ++match_len; } return match_len; } // ----------------------------------------------------------------------------- // VP8LBackwardRefs void VP8LInitBackwardRefs(VP8LBackwardRefs* const refs) { if (refs != NULL) { refs->refs = NULL; refs->size = 0; refs->max_size = 0; } } void VP8LClearBackwardRefs(VP8LBackwardRefs* const refs) { if (refs != NULL) { free(refs->refs); VP8LInitBackwardRefs(refs); } } int VP8LBackwardRefsAlloc(VP8LBackwardRefs* const refs, int max_size) { assert(refs != NULL); refs->size = 0; refs->max_size = 0; refs->refs = (PixOrCopy*)WebPSafeMalloc((uint64_t)max_size, sizeof(*refs->refs)); if (refs->refs == NULL) return 0; refs->max_size = max_size; return 1; } // ----------------------------------------------------------------------------- // Hash chains static WEBP_INLINE uint64_t GetPixPairHash64(const uint32_t* const argb) { uint64_t key = ((uint64_t)(argb[1]) << 32) | argb[0]; key = (key * HASH_MULTIPLIER) >> (64 - HASH_BITS); return key; } static int HashChainInit(HashChain* const p, int size) { int i; p->chain_ = (int*)WebPSafeMalloc((uint64_t)size, sizeof(*p->chain_)); if (p->chain_ == NULL) { return 0; } for (i = 0; i < size; ++i) { p->chain_[i] = -1; } for (i = 0; i < HASH_SIZE; ++i) { p->hash_to_first_index_[i] = -1; } return 1; } static void HashChainDelete(HashChain* const p) { if (p != NULL) { free(p->chain_); free(p); } } // Insertion of two pixels at a time. static void HashChainInsert(HashChain* const p, const uint32_t* const argb, int pos) { const uint64_t hash_code = GetPixPairHash64(argb); p->chain_[pos] = p->hash_to_first_index_[hash_code]; p->hash_to_first_index_[hash_code] = pos; } static void GetParamsForHashChainFindCopy(int quality, int xsize, int* window_size, int* iter_pos, int* iter_limit) { const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4); // Limit the backward-ref window size for lower qualities. const int max_window_size = (quality > 50) ? WINDOW_SIZE : (quality > 25) ? (xsize << 8) : (xsize << 4); assert(xsize > 0); *window_size = (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size; *iter_pos = 5 + (quality >> 3); *iter_limit = -quality * iter_mult; } static int HashChainFindCopy(const HashChain* const p, int base_position, int xsize, const uint32_t* const argb, int maxlen, int window_size, int iter_pos, int iter_limit, int* const distance_ptr, int* const length_ptr) { const uint64_t hash_code = GetPixPairHash64(&argb[base_position]); int prev_length = 0; int64_t best_val = 0; int best_length = 0; int best_distance = 0; const uint32_t* const argb_start = argb + base_position; const int min_pos = (base_position > window_size) ? base_position - window_size : 0; int pos; assert(xsize > 0); for (pos = p->hash_to_first_index_[hash_code]; pos >= min_pos; pos = p->chain_[pos]) { int64_t val; int curr_length; if (iter_pos < 0) { if (iter_pos < iter_limit || best_val >= 0xff0000) { break; } } --iter_pos; if (best_length != 0 && argb[pos + best_length - 1] != argb_start[best_length - 1]) { continue; } curr_length = FindMatchLength(argb + pos, argb_start, maxlen); if (curr_length < prev_length) { continue; } val = 65536 * curr_length; // Favoring 2d locality here gives savings for certain images. if (base_position - pos < 9 * xsize) { const int y = (base_position - pos) / xsize; int x = (base_position - pos) % xsize; if (x > xsize / 2) { x = xsize - x; } if (x <= 7 && x >= -8) { val -= y * y + x * x; } else { val -= 9 * 9 + 9 * 9; } } else { val -= 9 * 9 + 9 * 9; } if (best_val < val) { prev_length = curr_length; best_val = val; best_length = curr_length; best_distance = base_position - pos; if (curr_length >= MAX_LENGTH) { break; } if ((best_distance == 1 || best_distance == xsize) && best_length >= 128) { break; } } } *distance_ptr = best_distance; *length_ptr = best_length; return (best_length >= MIN_LENGTH); } static WEBP_INLINE void PushBackCopy(VP8LBackwardRefs* const refs, int length) { int size = refs->size; while (length >= MAX_LENGTH) { refs->refs[size++] = PixOrCopyCreateCopy(1, MAX_LENGTH); length -= MAX_LENGTH; } if (length > 0) { refs->refs[size++] = PixOrCopyCreateCopy(1, length); } refs->size = size; } static void BackwardReferencesRle(int xsize, int ysize, const uint32_t* const argb, VP8LBackwardRefs* const refs) { const int pix_count = xsize * ysize; int match_len = 0; int i; refs->size = 0; PushBackCopy(refs, match_len); // i=0 case refs->refs[refs->size++] = PixOrCopyCreateLiteral(argb[0]); for (i = 1; i < pix_count; ++i) { if (argb[i] == argb[i - 1]) { ++match_len; } else { PushBackCopy(refs, match_len); match_len = 0; refs->refs[refs->size++] = PixOrCopyCreateLiteral(argb[i]); } } PushBackCopy(refs, match_len); } static int BackwardReferencesHashChain(int xsize, int ysize, const uint32_t* const argb, int cache_bits, int quality, VP8LBackwardRefs* const refs) { int i; int ok = 0; int cc_init = 0; const int use_color_cache = (cache_bits > 0); const int pix_count = xsize * ysize; HashChain* const hash_chain = (HashChain*)malloc(sizeof(*hash_chain)); VP8LColorCache hashers; int window_size = WINDOW_SIZE; int iter_pos = 1; int iter_limit = -1; if (hash_chain == NULL) return 0; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } if (!HashChainInit(hash_chain, pix_count)) goto Error; refs->size = 0; GetParamsForHashChainFindCopy(quality, xsize, &window_size, &iter_pos, &iter_limit); for (i = 0; i < pix_count; ) { // Alternative#1: Code the pixels starting at 'i' using backward reference. int offset = 0; int len = 0; if (i < pix_count - 1) { // FindCopy(i,..) reads pixels at [i] and [i + 1]. int maxlen = pix_count - i; if (maxlen > MAX_LENGTH) { maxlen = MAX_LENGTH; } HashChainFindCopy(hash_chain, i, xsize, argb, maxlen, window_size, iter_pos, iter_limit, &offset, &len); } if (len >= MIN_LENGTH) { // Alternative#2: Insert the pixel at 'i' as literal, and code the // pixels starting at 'i + 1' using backward reference. int offset2 = 0; int len2 = 0; int k; HashChainInsert(hash_chain, &argb[i], i); if (i < pix_count - 2) { // FindCopy(i+1,..) reads [i + 1] and [i + 2]. int maxlen = pix_count - (i + 1); if (maxlen > MAX_LENGTH) { maxlen = MAX_LENGTH; } HashChainFindCopy(hash_chain, i + 1, xsize, argb, maxlen, window_size, iter_pos, iter_limit, &offset2, &len2); if (len2 > len + 1) { const uint32_t pixel = argb[i]; // Alternative#2 is a better match. So push pixel at 'i' as literal. if (use_color_cache && VP8LColorCacheContains(&hashers, pixel)) { const int ix = VP8LColorCacheGetIndex(&hashers, pixel); refs->refs[refs->size] = PixOrCopyCreateCacheIdx(ix); } else { refs->refs[refs->size] = PixOrCopyCreateLiteral(pixel); } ++refs->size; if (use_color_cache) VP8LColorCacheInsert(&hashers, pixel); i++; // Backward reference to be done for next pixel. len = len2; offset = offset2; } } if (len >= MAX_LENGTH) { len = MAX_LENGTH - 1; } refs->refs[refs->size++] = PixOrCopyCreateCopy(offset, len); if (use_color_cache) { for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } // Add to the hash_chain (but cannot add the last pixel). { const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i; for (k = 1; k < last; ++k) { HashChainInsert(hash_chain, &argb[i + k], i + k); } } i += len; } else { const uint32_t pixel = argb[i]; if (use_color_cache && VP8LColorCacheContains(&hashers, pixel)) { // push pixel as a PixOrCopyCreateCacheIdx pixel const int ix = VP8LColorCacheGetIndex(&hashers, pixel); refs->refs[refs->size] = PixOrCopyCreateCacheIdx(ix); } else { refs->refs[refs->size] = PixOrCopyCreateLiteral(pixel); } ++refs->size; if (use_color_cache) VP8LColorCacheInsert(&hashers, pixel); if (i + 1 < pix_count) { HashChainInsert(hash_chain, &argb[i], i); } ++i; } } ok = 1; Error: if (cc_init) VP8LColorCacheClear(&hashers); HashChainDelete(hash_chain); return ok; } // ----------------------------------------------------------------------------- typedef struct { double alpha_[VALUES_IN_BYTE]; double red_[VALUES_IN_BYTE]; double literal_[PIX_OR_COPY_CODES_MAX]; double blue_[VALUES_IN_BYTE]; double distance_[NUM_DISTANCE_CODES]; } CostModel; static int BackwardReferencesTraceBackwards( int xsize, int ysize, int recursive_cost_model, const uint32_t* const argb, int quality, int cache_bits, VP8LBackwardRefs* const refs); static void ConvertPopulationCountTableToBitEstimates( int num_symbols, const int population_counts[], double output[]) { int sum = 0; int nonzeros = 0; int i; for (i = 0; i < num_symbols; ++i) { sum += population_counts[i]; if (population_counts[i] > 0) { ++nonzeros; } } if (nonzeros <= 1) { memset(output, 0, num_symbols * sizeof(*output)); } else { const double logsum = VP8LFastLog2(sum); for (i = 0; i < num_symbols; ++i) { output[i] = logsum - VP8LFastLog2(population_counts[i]); } } } static int CostModelBuild(CostModel* const m, int xsize, int ysize, int recursion_level, const uint32_t* const argb, int quality, int cache_bits) { int ok = 0; VP8LHistogram histo; VP8LBackwardRefs refs; if (!VP8LBackwardRefsAlloc(&refs, xsize * ysize)) goto Error; if (recursion_level > 0) { if (!BackwardReferencesTraceBackwards(xsize, ysize, recursion_level - 1, argb, quality, cache_bits, &refs)) { goto Error; } } else { if (!BackwardReferencesHashChain(xsize, ysize, argb, cache_bits, quality, &refs)) { goto Error; } } VP8LHistogramCreate(&histo, &refs, cache_bits); ConvertPopulationCountTableToBitEstimates( VP8LHistogramNumCodes(&histo), histo.literal_, m->literal_); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, histo.red_, m->red_); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, histo.blue_, m->blue_); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, histo.alpha_, m->alpha_); ConvertPopulationCountTableToBitEstimates( NUM_DISTANCE_CODES, histo.distance_, m->distance_); ok = 1; Error: VP8LClearBackwardRefs(&refs); return ok; } static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) { return m->alpha_[v >> 24] + m->red_[(v >> 16) & 0xff] + m->literal_[(v >> 8) & 0xff] + m->blue_[v & 0xff]; } static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) { const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx; return m->literal_[literal_idx]; } static WEBP_INLINE double GetLengthCost(const CostModel* const m, uint32_t length) { int code, extra_bits_count, extra_bits_value; PrefixEncode(length, &code, &extra_bits_count, &extra_bits_value); return m->literal_[VALUES_IN_BYTE + code] + extra_bits_count; } static WEBP_INLINE double GetDistanceCost(const CostModel* const m, uint32_t distance) { int code, extra_bits_count, extra_bits_value; PrefixEncode(distance, &code, &extra_bits_count, &extra_bits_value); return m->distance_[code] + extra_bits_count; } static int BackwardReferencesHashChainDistanceOnly( int xsize, int ysize, int recursive_cost_model, const uint32_t* const argb, int quality, int cache_bits, uint32_t* const dist_array) { int i; int ok = 0; int cc_init = 0; const int pix_count = xsize * ysize; const int use_color_cache = (cache_bits > 0); float* const cost = (float*)WebPSafeMalloc((uint64_t)pix_count, sizeof(*cost)); CostModel* cost_model = (CostModel*)malloc(sizeof(*cost_model)); HashChain* hash_chain = (HashChain*)malloc(sizeof(*hash_chain)); VP8LColorCache hashers; const double mul0 = (recursive_cost_model != 0) ? 1.0 : 0.68; const double mul1 = (recursive_cost_model != 0) ? 1.0 : 0.82; const int min_distance_code = 2; // TODO(vikasa): tune as function of quality int window_size = WINDOW_SIZE; int iter_pos = 1; int iter_limit = -1; if (cost == NULL || cost_model == NULL || hash_chain == NULL) goto Error; if (!HashChainInit(hash_chain, pix_count)) goto Error; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } if (!CostModelBuild(cost_model, xsize, ysize, recursive_cost_model, argb, quality, cache_bits)) { goto Error; } for (i = 0; i < pix_count; ++i) cost[i] = 1e38f; // We loop one pixel at a time, but store all currently best points to // non-processed locations from this point. dist_array[0] = 0; GetParamsForHashChainFindCopy(quality, xsize, &window_size, &iter_pos, &iter_limit); for (i = 0; i < pix_count; ++i) { double prev_cost = 0.0; int shortmax; if (i > 0) { prev_cost = cost[i - 1]; } for (shortmax = 0; shortmax < 2; ++shortmax) { int offset = 0; int len = 0; if (i < pix_count - 1) { // FindCopy reads pixels at [i] and [i + 1]. int maxlen = shortmax ? 2 : MAX_LENGTH; if (maxlen > pix_count - i) { maxlen = pix_count - i; } HashChainFindCopy(hash_chain, i, xsize, argb, maxlen, window_size, iter_pos, iter_limit, &offset, &len); } if (len >= MIN_LENGTH) { const int code = DistanceToPlaneCode(xsize, offset); const double distance_cost = prev_cost + GetDistanceCost(cost_model, code); int k; for (k = 1; k < len; ++k) { const double cost_val = distance_cost + GetLengthCost(cost_model, k); if (cost[i + k] > cost_val) { cost[i + k] = (float)cost_val; dist_array[i + k] = k + 1; } } // This if is for speedup only. It roughly doubles the speed, and // makes compression worse by .1 %. if (len >= 128 && code <= min_distance_code) { // Long copy for short distances, let's skip the middle // lookups for better copies. // 1) insert the hashes. if (use_color_cache) { for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } // 2) Add to the hash_chain (but cannot add the last pixel) { const int last = (len + i < pix_count - 1) ? len + i : pix_count - 1; for (k = i; k < last; ++k) { HashChainInsert(hash_chain, &argb[k], k); } } // 3) jump. i += len - 1; // for loop does ++i, thus -1 here. goto next_symbol; } } } if (i < pix_count - 1) { HashChainInsert(hash_chain, &argb[i], i); } { // inserting a literal pixel double cost_val = prev_cost; if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) { const int ix = VP8LColorCacheGetIndex(&hashers, argb[i]); cost_val += GetCacheCost(cost_model, ix) * mul0; } else { cost_val += GetLiteralCost(cost_model, argb[i]) * mul1; } if (cost[i] > cost_val) { cost[i] = (float)cost_val; dist_array[i] = 1; // only one is inserted. } if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); } next_symbol: ; } // Last pixel still to do, it can only be a single step if not reached // through cheaper means already. ok = 1; Error: if (cc_init) VP8LColorCacheClear(&hashers); HashChainDelete(hash_chain); free(cost_model); free(cost); return ok; } // We pack the path at the end of *dist_array and return // a pointer to this part of the array. Example: // dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232] static void TraceBackwards(uint32_t* const dist_array, int dist_array_size, uint32_t** const chosen_path, int* const chosen_path_size) { uint32_t* path = dist_array + dist_array_size; uint32_t* cur = dist_array + dist_array_size - 1; while (cur >= dist_array) { const int k = *cur; --path; *path = k; cur -= k; } *chosen_path = path; *chosen_path_size = (int)(dist_array + dist_array_size - path); } static int BackwardReferencesHashChainFollowChosenPath( int xsize, int ysize, const uint32_t* const argb, int quality, int cache_bits, const uint32_t* const chosen_path, int chosen_path_size, VP8LBackwardRefs* const refs) { const int pix_count = xsize * ysize; const int use_color_cache = (cache_bits > 0); int size = 0; int i = 0; int k; int ix; int ok = 0; int cc_init = 0; int window_size = WINDOW_SIZE; int iter_pos = 1; int iter_limit = -1; HashChain* hash_chain = (HashChain*)malloc(sizeof(*hash_chain)); VP8LColorCache hashers; if (hash_chain == NULL || !HashChainInit(hash_chain, pix_count)) { goto Error; } if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } refs->size = 0; GetParamsForHashChainFindCopy(quality, xsize, &window_size, &iter_pos, &iter_limit); for (ix = 0; ix < chosen_path_size; ++ix, ++size) { int offset = 0; int len = 0; int maxlen = chosen_path[ix]; if (maxlen != 1) { HashChainFindCopy(hash_chain, i, xsize, argb, maxlen, window_size, iter_pos, iter_limit, &offset, &len); assert(len == maxlen); refs->refs[size] = PixOrCopyCreateCopy(offset, len); if (use_color_cache) { for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } { const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i; for (k = 0; k < last; ++k) { HashChainInsert(hash_chain, &argb[i + k], i + k); } } i += len; } else { if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) { // push pixel as a color cache index const int idx = VP8LColorCacheGetIndex(&hashers, argb[i]); refs->refs[size] = PixOrCopyCreateCacheIdx(idx); } else { refs->refs[size] = PixOrCopyCreateLiteral(argb[i]); } if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); if (i + 1 < pix_count) { HashChainInsert(hash_chain, &argb[i], i); } ++i; } } assert(size <= refs->max_size); refs->size = size; ok = 1; Error: if (cc_init) VP8LColorCacheClear(&hashers); HashChainDelete(hash_chain); return ok; } // Returns 1 on success. static int BackwardReferencesTraceBackwards(int xsize, int ysize, int recursive_cost_model, const uint32_t* const argb, int quality, int cache_bits, VP8LBackwardRefs* const refs) { int ok = 0; const int dist_array_size = xsize * ysize; uint32_t* chosen_path = NULL; int chosen_path_size = 0; uint32_t* dist_array = (uint32_t*)WebPSafeMalloc((uint64_t)dist_array_size, sizeof(*dist_array)); if (dist_array == NULL) goto Error; if (!BackwardReferencesHashChainDistanceOnly( xsize, ysize, recursive_cost_model, argb, quality, cache_bits, dist_array)) { goto Error; } TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); if (!BackwardReferencesHashChainFollowChosenPath( xsize, ysize, argb, quality, cache_bits, chosen_path, chosen_path_size, refs)) { goto Error; } ok = 1; Error: free(dist_array); return ok; } static void BackwardReferences2DLocality(int xsize, VP8LBackwardRefs* const refs) { int i; for (i = 0; i < refs->size; ++i) { if (PixOrCopyIsCopy(&refs->refs[i])) { const int dist = refs->refs[i].argb_or_distance; const int transformed_dist = DistanceToPlaneCode(xsize, dist); refs->refs[i].argb_or_distance = transformed_dist; } } } int VP8LGetBackwardReferences(int width, int height, const uint32_t* const argb, int quality, int cache_bits, int use_2d_locality, VP8LBackwardRefs* const best) { int ok = 0; int lz77_is_useful; VP8LBackwardRefs refs_rle, refs_lz77; const int num_pix = width * height; VP8LBackwardRefsAlloc(&refs_rle, num_pix); VP8LBackwardRefsAlloc(&refs_lz77, num_pix); VP8LInitBackwardRefs(best); if (refs_rle.refs == NULL || refs_lz77.refs == NULL) { Error1: VP8LClearBackwardRefs(&refs_rle); VP8LClearBackwardRefs(&refs_lz77); goto End; } if (!BackwardReferencesHashChain(width, height, argb, cache_bits, quality, &refs_lz77)) { goto End; } // Backward Reference using RLE only. BackwardReferencesRle(width, height, argb, &refs_rle); { double bit_cost_lz77, bit_cost_rle; VP8LHistogram* const histo = (VP8LHistogram*)malloc(sizeof(*histo)); if (histo == NULL) goto Error1; // Evaluate lz77 coding VP8LHistogramCreate(histo, &refs_lz77, cache_bits); bit_cost_lz77 = VP8LHistogramEstimateBits(histo); // Evaluate RLE coding VP8LHistogramCreate(histo, &refs_rle, cache_bits); bit_cost_rle = VP8LHistogramEstimateBits(histo); // Decide if LZ77 is useful. lz77_is_useful = (bit_cost_lz77 < bit_cost_rle); free(histo); } // Choose appropriate backward reference. if (lz77_is_useful) { // TraceBackwards is costly. Don't execute it at lower quality (q <= 10). const int try_lz77_trace_backwards = (quality > 10); *best = refs_lz77; // default guess: lz77 is better VP8LClearBackwardRefs(&refs_rle); if (try_lz77_trace_backwards) { const int recursion_level = (num_pix < 320 * 200) ? 1 : 0; VP8LBackwardRefs refs_trace; if (!VP8LBackwardRefsAlloc(&refs_trace, num_pix)) { goto End; } if (BackwardReferencesTraceBackwards(width, height, recursion_level, argb, quality, cache_bits, &refs_trace)) { VP8LClearBackwardRefs(&refs_lz77); *best = refs_trace; } } } else { VP8LClearBackwardRefs(&refs_lz77); *best = refs_rle; } if (use_2d_locality) BackwardReferences2DLocality(width, best); ok = 1; End: if (!ok) { VP8LClearBackwardRefs(best); } return ok; } // Returns 1 on success. static int ComputeCacheHistogram(const uint32_t* const argb, int xsize, int ysize, const VP8LBackwardRefs* const refs, int cache_bits, VP8LHistogram* const histo) { int pixel_index = 0; int i; uint32_t k; VP8LColorCache hashers; const int use_color_cache = (cache_bits > 0); int cc_init = 0; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) return 0; } for (i = 0; i < refs->size; ++i) { const PixOrCopy* const v = &refs->refs[i]; if (PixOrCopyIsLiteral(v)) { if (use_color_cache && VP8LColorCacheContains(&hashers, argb[pixel_index])) { // push pixel as a cache index const int ix = VP8LColorCacheGetIndex(&hashers, argb[pixel_index]); const PixOrCopy token = PixOrCopyCreateCacheIdx(ix); VP8LHistogramAddSinglePixOrCopy(histo, &token); } else { VP8LHistogramAddSinglePixOrCopy(histo, v); } } else { VP8LHistogramAddSinglePixOrCopy(histo, v); } if (use_color_cache) { for (k = 0; k < PixOrCopyLength(v); ++k) { VP8LColorCacheInsert(&hashers, argb[pixel_index + k]); } } pixel_index += PixOrCopyLength(v); } assert(pixel_index == xsize * ysize); (void)xsize; // xsize is not used in non-debug compilations otherwise. (void)ysize; // ysize is not used in non-debug compilations otherwise. if (cc_init) VP8LColorCacheClear(&hashers); return 1; } // Returns how many bits are to be used for a color cache. int VP8LCalculateEstimateForCacheSize(const uint32_t* const argb, int xsize, int ysize, int* const best_cache_bits) { int ok = 0; int cache_bits; double lowest_entropy = 1e99; VP8LBackwardRefs refs; static const double kSmallPenaltyForLargeCache = 4.0; static const int quality = 30; if (!VP8LBackwardRefsAlloc(&refs, xsize * ysize) || !BackwardReferencesHashChain(xsize, ysize, argb, 0, quality, &refs)) { goto Error; } for (cache_bits = 0; cache_bits <= MAX_COLOR_CACHE_BITS; ++cache_bits) { double cur_entropy; VP8LHistogram histo; VP8LHistogramInit(&histo, cache_bits); ComputeCacheHistogram(argb, xsize, ysize, &refs, cache_bits, &histo); cur_entropy = VP8LHistogramEstimateBits(&histo) + kSmallPenaltyForLargeCache * cache_bits; if (cache_bits == 0 || cur_entropy < lowest_entropy) { *best_cache_bits = cache_bits; lowest_entropy = cur_entropy; } } ok = 1; Error: VP8LClearBackwardRefs(&refs); return ok; }