/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_CUDAIMGPROC_HPP__ #define __OPENCV_CUDAIMGPROC_HPP__ #ifndef __cplusplus # error cudaimgproc.hpp header must be compiled as C++ #endif #include "opencv2/core/cuda.hpp" #include "opencv2/imgproc.hpp" /** @addtogroup cuda @{ @defgroup cudaimgproc Image Processing @{ @defgroup cudaimgproc_color Color space processing @defgroup cudaimgproc_hist Histogram Calculation @defgroup cudaimgproc_hough Hough Transform @defgroup cudaimgproc_feature Feature Detection @} @} */ namespace cv { namespace cuda { //! @addtogroup cudaimgproc //! @{ /////////////////////////// Color Processing /////////////////////////// //! @addtogroup cudaimgproc_color //! @{ /** @brief Converts an image from one color space to another. @param src Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels. @param dst Destination image. @param code Color space conversion code. For details, see cvtColor . @param dcn Number of channels in the destination image. If the parameter is 0, the number of the channels is derived automatically from src and the code . @param stream Stream for the asynchronous version. 3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better performance. @sa cvtColor */ CV_EXPORTS void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null()); enum DemosaicTypes { //! Bayer Demosaicing (Malvar, He, and Cutler) COLOR_BayerBG2BGR_MHT = 256, COLOR_BayerGB2BGR_MHT = 257, COLOR_BayerRG2BGR_MHT = 258, COLOR_BayerGR2BGR_MHT = 259, COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT, COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT, COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT, COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT, COLOR_BayerBG2GRAY_MHT = 260, COLOR_BayerGB2GRAY_MHT = 261, COLOR_BayerRG2GRAY_MHT = 262, COLOR_BayerGR2GRAY_MHT = 263 }; /** @brief Converts an image from Bayer pattern to RGB or grayscale. @param src Source image (8-bit or 16-bit single channel). @param dst Destination image. @param code Color space conversion code (see the description below). @param dcn Number of channels in the destination image. If the parameter is 0, the number of the channels is derived automatically from src and the code . @param stream Stream for the asynchronous version. The function can do the following transformations: - Demosaicing using bilinear interpolation > - COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY > - COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR - Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011) > - COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT , > COLOR_BayerGR2GRAY_MHT > - COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT , > COLOR_BayerGR2BGR_MHT @sa cvtColor */ CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null()); /** @brief Exchanges the color channels of an image in-place. @param image Source image. Supports only CV_8UC4 type. @param dstOrder Integer array describing how channel values are permutated. The n-th entry of the array contains the number of the channel that is stored in the n-th channel of the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order. @param stream Stream for the asynchronous version. The methods support arbitrary permutations of the original channels, including replication. */ CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null()); /** @brief Routines for correcting image color gamma. @param src Source image (3- or 4-channel 8 bit). @param dst Destination image. @param forward true for forward gamma correction or false for inverse gamma correction. @param stream Stream for the asynchronous version. */ CV_EXPORTS void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null()); enum AlphaCompTypes { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL, ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL}; /** @brief Composites two images using alpha opacity values contained in each image. @param img1 First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types. @param img2 Second image. Must have the same size and the same type as img1 . @param dst Destination image. @param alpha_op Flag specifying the alpha-blending operation: - **ALPHA_OVER** - **ALPHA_IN** - **ALPHA_OUT** - **ALPHA_ATOP** - **ALPHA_XOR** - **ALPHA_PLUS** - **ALPHA_OVER_PREMUL** - **ALPHA_IN_PREMUL** - **ALPHA_OUT_PREMUL** - **ALPHA_ATOP_PREMUL** - **ALPHA_XOR_PREMUL** - **ALPHA_PLUS_PREMUL** - **ALPHA_PREMUL** @param stream Stream for the asynchronous version. @note - An example demonstrating the use of alphaComp can be found at opencv_source_code/samples/gpu/alpha_comp.cpp */ CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null()); //! @} cudaimgproc_color ////////////////////////////// Histogram /////////////////////////////// //! @addtogroup cudaimgproc_hist //! @{ /** @brief Calculates histogram for one channel 8-bit image. @param src Source image with CV_8UC1 type. @param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type. @param stream Stream for the asynchronous version. */ CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null()); /** @brief Equalizes the histogram of a grayscale image. @param src Source image with CV_8UC1 type. @param dst Destination image. @param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes). @param stream Stream for the asynchronous version. @sa equalizeHist */ CV_EXPORTS void equalizeHist(InputArray src, OutputArray dst, InputOutputArray buf, Stream& stream = Stream::Null()); /** @overload */ static inline void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) { GpuMat buf; cuda::equalizeHist(src, dst, buf, stream); } /** @brief Base class for Contrast Limited Adaptive Histogram Equalization. : */ class CV_EXPORTS CLAHE : public cv::CLAHE { public: using cv::CLAHE::apply; /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization. @param src Source image with CV_8UC1 type. @param dst Destination image. @param stream Stream for the asynchronous version. */ virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0; }; /** @brief Creates implementation for cuda::CLAHE . @param clipLimit Threshold for contrast limiting. @param tileGridSize Size of grid for histogram equalization. Input image will be divided into equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column. */ CV_EXPORTS Ptr createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); /** @brief Computes levels with even distribution. @param levels Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type. @param nLevels Number of computed levels. nLevels must be at least 2. @param lowerLevel Lower boundary value of the lowest level. @param upperLevel Upper boundary value of the greatest level. */ CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel); /** @brief Calculates a histogram with evenly distributed bins. @param src Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For a four-channel image, all channels are processed separately. @param hist Destination histogram with one row, histSize columns, and the CV_32S type. @param histSize Size of the histogram. @param lowerLevel Lower boundary of lowest-level bin. @param upperLevel Upper boundary of highest-level bin. @param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes). @param stream Stream for the asynchronous version. */ CV_EXPORTS void histEven(InputArray src, OutputArray hist, InputOutputArray buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); /** @overload */ static inline void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()) { GpuMat buf; cuda::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); } /** @overload */ CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], InputOutputArray buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()); /** @overload */ static inline void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()) { GpuMat buf; cuda::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); } /** @brief Calculates a histogram with bins determined by the levels array. @param src Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported. For a four-channel image, all channels are processed separately. @param hist Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type. @param levels Number of levels in the histogram. @param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes). @param stream Stream for the asynchronous version. */ CV_EXPORTS void histRange(InputArray src, OutputArray hist, InputArray levels, InputOutputArray buf, Stream& stream = Stream::Null()); /** @overload */ static inline void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null()) { GpuMat buf; cuda::histRange(src, hist, levels, buf, stream); } /** @overload */ CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], InputOutputArray buf, Stream& stream = Stream::Null()); /** @overload */ static inline void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null()) { GpuMat buf; cuda::histRange(src, hist, levels, buf, stream); } //! @} cudaimgproc_hist //////////////////////////////// Canny //////////////////////////////// /** @brief Base class for Canny Edge Detector. : */ class CV_EXPORTS CannyEdgeDetector : public Algorithm { public: /** @brief Finds edges in an image using the @cite Canny86 algorithm. @param image Single-channel 8-bit input image. @param edges Output edge map. It has the same size and type as image . */ virtual void detect(InputArray image, OutputArray edges) = 0; /** @overload @param dx First derivative of image in the vertical direction. Support only CV_32S type. @param dy First derivative of image in the horizontal direction. Support only CV_32S type. @param edges Output edge map. It has the same size and type as image . */ virtual void detect(InputArray dx, InputArray dy, OutputArray edges) = 0; virtual void setLowThreshold(double low_thresh) = 0; virtual double getLowThreshold() const = 0; virtual void setHighThreshold(double high_thresh) = 0; virtual double getHighThreshold() const = 0; virtual void setAppertureSize(int apperture_size) = 0; virtual int getAppertureSize() const = 0; virtual void setL2Gradient(bool L2gradient) = 0; virtual bool getL2Gradient() const = 0; }; /** @brief Creates implementation for cuda::CannyEdgeDetector . @param low_thresh First threshold for the hysteresis procedure. @param high_thresh Second threshold for the hysteresis procedure. @param apperture_size Aperture size for the Sobel operator. @param L2gradient Flag indicating whether a more accurate \f$L_2\f$ norm \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude ( L2gradient=true ), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( L2gradient=false ). */ CV_EXPORTS Ptr createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); /////////////////////////// Hough Transform //////////////////////////// ////////////////////////////////////// // HoughLines //! @addtogroup cudaimgproc_hough //! @{ /** @brief Base class for lines detector algorithm. : */ class CV_EXPORTS HoughLinesDetector : public Algorithm { public: /** @brief Finds lines in a binary image using the classical Hough transform. @param src 8-bit, single-channel binary source image. @param lines Output vector of lines. Each line is represented by a two-element vector \f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of the image). \f$\theta\f$ is the line rotation angle in radians ( \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ). @sa HoughLines */ virtual void detect(InputArray src, OutputArray lines) = 0; /** @brief Downloads results from cuda::HoughLinesDetector::detect to host memory. @param d_lines Result of cuda::HoughLinesDetector::detect . @param h_lines Output host array. @param h_votes Optional output array for line's votes. */ virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) = 0; virtual void setRho(float rho) = 0; virtual float getRho() const = 0; virtual void setTheta(float theta) = 0; virtual float getTheta() const = 0; virtual void setThreshold(int threshold) = 0; virtual int getThreshold() const = 0; virtual void setDoSort(bool doSort) = 0; virtual bool getDoSort() const = 0; virtual void setMaxLines(int maxLines) = 0; virtual int getMaxLines() const = 0; }; /** @brief Creates implementation for cuda::HoughLinesDetector . @param rho Distance resolution of the accumulator in pixels. @param theta Angle resolution of the accumulator in radians. @param threshold Accumulator threshold parameter. Only those lines are returned that get enough votes ( \f$>\texttt{threshold}\f$ ). @param doSort Performs lines sort by votes. @param maxLines Maximum number of output lines. */ CV_EXPORTS Ptr createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096); ////////////////////////////////////// // HoughLinesP /** @brief Base class for line segments detector algorithm. : */ class CV_EXPORTS HoughSegmentDetector : public Algorithm { public: /** @brief Finds line segments in a binary image using the probabilistic Hough transform. @param src 8-bit, single-channel binary source image. @param lines Output vector of lines. Each line is represented by a 4-element vector \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected line segment. @sa HoughLinesP */ virtual void detect(InputArray src, OutputArray lines) = 0; virtual void setRho(float rho) = 0; virtual float getRho() const = 0; virtual void setTheta(float theta) = 0; virtual float getTheta() const = 0; virtual void setMinLineLength(int minLineLength) = 0; virtual int getMinLineLength() const = 0; virtual void setMaxLineGap(int maxLineGap) = 0; virtual int getMaxLineGap() const = 0; virtual void setMaxLines(int maxLines) = 0; virtual int getMaxLines() const = 0; }; /** @brief Creates implementation for cuda::HoughSegmentDetector . @param rho Distance resolution of the accumulator in pixels. @param theta Angle resolution of the accumulator in radians. @param minLineLength Minimum line length. Line segments shorter than that are rejected. @param maxLineGap Maximum allowed gap between points on the same line to link them. @param maxLines Maximum number of output lines. */ CV_EXPORTS Ptr createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096); ////////////////////////////////////// // HoughCircles /** @brief Base class for circles detector algorithm. : */ class CV_EXPORTS HoughCirclesDetector : public Algorithm { public: /** @brief Finds circles in a grayscale image using the Hough transform. @param src 8-bit, single-channel grayscale input image. @param circles Output vector of found circles. Each vector is encoded as a 3-element floating-point vector \f$(x, y, radius)\f$ . @sa HoughCircles */ virtual void detect(InputArray src, OutputArray circles) = 0; virtual void setDp(float dp) = 0; virtual float getDp() const = 0; virtual void setMinDist(float minDist) = 0; virtual float getMinDist() const = 0; virtual void setCannyThreshold(int cannyThreshold) = 0; virtual int getCannyThreshold() const = 0; virtual void setVotesThreshold(int votesThreshold) = 0; virtual int getVotesThreshold() const = 0; virtual void setMinRadius(int minRadius) = 0; virtual int getMinRadius() const = 0; virtual void setMaxRadius(int maxRadius) = 0; virtual int getMaxRadius() const = 0; virtual void setMaxCircles(int maxCircles) = 0; virtual int getMaxCircles() const = 0; }; /** @brief Creates implementation for cuda::HoughCirclesDetector . @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has half as big width and height. @param minDist Minimum distance between the centers of the detected circles. If the parameter is too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is too large, some circles may be missed. @param cannyThreshold The higher threshold of the two passed to Canny edge detector (the lower one is twice smaller). @param votesThreshold The accumulator threshold for the circle centers at the detection stage. The smaller it is, the more false circles may be detected. @param minRadius Minimum circle radius. @param maxRadius Maximum circle radius. @param maxCircles Maximum number of output circles. */ CV_EXPORTS Ptr createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096); ////////////////////////////////////// // GeneralizedHough /** @brief Creates implementation for generalized hough transform from @cite Ballard1981 . */ CV_EXPORTS Ptr createGeneralizedHoughBallard(); /** @brief Creates implementation for generalized hough transform from @cite Guil1999 . */ CV_EXPORTS Ptr createGeneralizedHoughGuil(); //! @} cudaimgproc_hough ////////////////////////// Corners Detection /////////////////////////// //! @addtogroup cudaimgproc_feature //! @{ /** @brief Base class for Cornerness Criteria computation. : */ class CV_EXPORTS CornernessCriteria : public Algorithm { public: /** @brief Computes the cornerness criteria at each image pixel. @param src Source image. @param dst Destination image containing cornerness values. It will have the same size as src and CV_32FC1 type. @param stream Stream for the asynchronous version. */ virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0; }; /** @brief Creates implementation for Harris cornerness criteria. @param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now. @param blockSize Neighborhood size. @param ksize Aperture parameter for the Sobel operator. @param k Harris detector free parameter. @param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are supported for now. @sa cornerHarris */ CV_EXPORTS Ptr createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101); /** @brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the cornerness criteria). @param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now. @param blockSize Neighborhood size. @param ksize Aperture parameter for the Sobel operator. @param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are supported for now. @sa cornerMinEigenVal */ CV_EXPORTS Ptr createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101); ////////////////////////// Corners Detection /////////////////////////// /** @brief Base class for Corners Detector. : */ class CV_EXPORTS CornersDetector : public Algorithm { public: /** @brief Determines strong corners on an image. @param image Input 8-bit or floating-point 32-bit, single-channel image. @param corners Output vector of detected corners (1-row matrix with CV_32FC2 type with corners positions). @param mask Optional region of interest. If the image is not empty (it needs to have the type CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. */ virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray()) = 0; }; /** @brief Creates implementation for cuda::CornersDetector . @param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now. @param maxCorners Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned. @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure less than 15 are rejected. @param minDistance Minimum possible Euclidean distance between the returned corners. @param blockSize Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See cornerEigenValsAndVecs . @param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris) or cornerMinEigenVal. @param harrisK Free parameter of the Harris detector. */ CV_EXPORTS Ptr createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04); //! @} cudaimgproc_feature ///////////////////////////// Mean Shift ////////////////////////////// /** @brief Performs mean-shift filtering for each point of the source image. @param src Source image. Only CV_8UC4 images are supported for now. @param dst Destination image containing the color of mapped points. It has the same size and type as src . @param sp Spatial window radius. @param sr Color window radius. @param criteria Termination criteria. See TermCriteria. @param stream It maps each point of the source image into another point. As a result, you have a new color and new position of each point. */ CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream = Stream::Null()); /** @brief Performs a mean-shift procedure and stores information about processed points (their colors and positions) in two images. @param src Source image. Only CV_8UC4 images are supported for now. @param dstr Destination image containing the color of mapped points. The size and type is the same as src . @param dstsp Destination image containing the position of mapped points. The size is the same as src size. The type is CV_16SC2 . @param sp Spatial window radius. @param sr Color window radius. @param criteria Termination criteria. See TermCriteria. @param stream @sa cuda::meanShiftFiltering */ CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream = Stream::Null()); /** @brief Performs a mean-shift segmentation of the source image and eliminates small segments. @param src Source image. Only CV_8UC4 images are supported for now. @param dst Segmented image with the same size and type as src (host memory). @param sp Spatial window radius. @param sr Color window radius. @param minsize Minimum segment size. Smaller segments are merged. @param criteria Termination criteria. See TermCriteria. */ CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); /////////////////////////// Match Template //////////////////////////// /** @brief Base class for Template Matching. : */ class CV_EXPORTS TemplateMatching : public Algorithm { public: /** @brief Computes a proximity map for a raster template and an image where the template is searched for. @param image Source image. @param templ Template image with the size and type the same as image . @param result Map containing comparison results ( CV_32FC1 ). If image is *W x H* and templ is *w x h*, then result must be *W-w+1 x H-h+1*. @param stream Stream for the asynchronous version. */ virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0; }; /** @brief Creates implementation for cuda::TemplateMatching . @param srcType Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported for now. @param method Specifies the way to compare the template with the image. @param user_block_size You can use field user_block_size to set specific block size. If you leave its default value Size(0,0) then automatic estimation of block size will be used (which is optimized for speed). By varying user_block_size you can reduce memory requirements at the cost of speed. The following methods are supported for the CV_8U depth images for now: - CV_TM_SQDIFF - CV_TM_SQDIFF_NORMED - CV_TM_CCORR - CV_TM_CCORR_NORMED - CV_TM_CCOEFF - CV_TM_CCOEFF_NORMED The following methods are supported for the CV_32F images for now: - CV_TM_SQDIFF - CV_TM_CCORR @sa matchTemplate */ CV_EXPORTS Ptr createTemplateMatching(int srcType, int method, Size user_block_size = Size()); ////////////////////////// Bilateral Filter /////////////////////////// /** @brief Performs bilateral filtering of passed image @param src Source image. Supports only (channles != 2 && depth() != CV_8S && depth() != CV_32S && depth() != CV_64F). @param dst Destination imagwe. @param kernel_size Kernel window size. @param sigma_color Filter sigma in the color space. @param sigma_spatial Filter sigma in the coordinate space. @param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 , BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now. @param stream Stream for the asynchronous version. @sa bilateralFilter */ CV_EXPORTS void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null()); ///////////////////////////// Blending //////////////////////////////// /** @brief Performs linear blending of two images. @param img1 First image. Supports only CV_8U and CV_32F depth. @param img2 Second image. Must have the same size and the same type as img1 . @param weights1 Weights for first image. Must have tha same size as img1 . Supports only CV_32F type. @param weights2 Weights for second image. Must have tha same size as img2 . Supports only CV_32F type. @param result Destination image. @param stream Stream for the asynchronous version. */ CV_EXPORTS void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2, OutputArray result, Stream& stream = Stream::Null()); //! @} }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDAIMGPROC_HPP__ */