// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2019 Intel Corporation #ifdef HAVE_PLAIDML #include "test_precomp.hpp" #include #include #include "logger.hpp" #include #include namespace opencv_test { inline cv::gapi::plaidml::config getConfig() { auto read_var_from_env = [](const char* env) { const char* raw = std::getenv(env); if (!raw) { cv::util::throw_error(std::runtime_error(std::string(env) + " is't set")); } return std::string(raw); }; auto dev_id = read_var_from_env("PLAIDML_DEVICE"); auto trg_id = read_var_from_env("PLAIDML_TARGET"); return cv::gapi::plaidml::config{std::move(dev_id), std::move(trg_id)}; } TEST(GAPI_PlaidML_Pipelines, SimpleArithmetic) { cv::Size size(1920, 1080); int type = CV_8UC1; cv::Mat in_mat1(size, type); cv::Mat in_mat2(size, type); // NB: What about overflow ? PlaidML doesn't handle it cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(127)); cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(127)); cv::Mat out_mat(size, type, cv::Scalar::all(0)); cv::Mat ref_mat(size, type, cv::Scalar::all(0)); ////////////////////////////// G-API ////////////////////////////////////// cv::GMat in1, in2; auto out = in1 + in2; cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out)); comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), cv::compile_args(getConfig(), cv::gapi::use_only{cv::gapi::core::plaidml::kernels()})); ////////////////////////////// OpenCV ///////////////////////////////////// cv::add(in_mat1, in_mat2, ref_mat, cv::noArray(), type); EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); } // FIXME PlaidML cpu backend does't support bitwise operations TEST(GAPI_PlaidML_Pipelines, DISABLED_ComplexArithmetic) { cv::Size size(1920, 1080); int type = CV_8UC1; cv::Mat in_mat1(size, type); cv::Mat in_mat2(size, type); cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255)); cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255)); cv::Mat out_mat(size, type, cv::Scalar::all(0)); cv::Mat ref_mat(size, type, cv::Scalar::all(0)); ////////////////////////////// G-API ////////////////////////////////////// cv::GMat in1, in2; auto out = in1 | (in2 ^ (in1 & (in2 + (in1 - in2)))); cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out)); comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), cv::compile_args(getConfig(), cv::gapi::use_only{cv::gapi::core::plaidml::kernels()})); ////////////////////////////// OpenCV ///////////////////////////////////// cv::subtract(in_mat1, in_mat2, ref_mat, cv::noArray(), type); cv::add(in_mat2, ref_mat, ref_mat, cv::noArray(), type); cv::bitwise_and(in_mat1, ref_mat, ref_mat); cv::bitwise_xor(in_mat2, ref_mat, ref_mat); cv::bitwise_or(in_mat1, ref_mat, ref_mat); EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); } TEST(GAPI_PlaidML_Pipelines, TwoInputOperations) { cv::Size size(1920, 1080); int type = CV_8UC1; constexpr int kNumInputs = 4; std::vector in_mat(kNumInputs, cv::Mat(size, type)); for (int i = 0; i < kNumInputs; ++i) { cv::randu(in_mat[i], cv::Scalar::all(0), cv::Scalar::all(60)); } cv::Mat out_mat(size, type, cv::Scalar::all(0)); cv::Mat ref_mat(size, type, cv::Scalar::all(0)); ////////////////////////////// G-API ////////////////////////////////////// cv::GMat in[4]; auto out = (in[3] - in[0]) + (in[2] - in[1]); cv::GComputation comp(cv::GIn(in[0], in[1], in[2], in[3]), cv::GOut(out)); // FIXME Doesn't work just apply(in_mat, out_mat, ...) comp.apply(cv::gin(in_mat[0], in_mat[1], in_mat[2], in_mat[3]), cv::gout(out_mat), cv::compile_args(getConfig(), cv::gapi::use_only{cv::gapi::core::plaidml::kernels()})); ////////////////////////////// OpenCV ///////////////////////////////////// cv::subtract(in_mat[3], in_mat[0], ref_mat, cv::noArray(), type); cv::add(ref_mat, in_mat[2], ref_mat, cv::noArray(), type); cv::subtract(ref_mat, in_mat[1], ref_mat, cv::noArray(), type); EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); } TEST(GAPI_PlaidML_Pipelines, TwoOutputOperations) { cv::Size size(1920, 1080); int type = CV_8UC1; constexpr int kNumInputs = 4; std::vector in_mat(kNumInputs, cv::Mat(size, type)); for (int i = 0; i < kNumInputs; ++i) { cv::randu(in_mat[i], cv::Scalar::all(0), cv::Scalar::all(60)); } std::vector out_mat(kNumInputs, cv::Mat(size, type, cv::Scalar::all(0))); std::vector ref_mat(kNumInputs, cv::Mat(size, type, cv::Scalar::all(0))); ////////////////////////////// G-API ////////////////////////////////////// cv::GMat in[4], out[2]; out[0] = in[0] + in[3]; out[1] = in[1] + in[2]; cv::GComputation comp(cv::GIn(in[0], in[1], in[2], in[3]), cv::GOut(out[0], out[1])); // FIXME Doesn't work just apply(in_mat, out_mat, ...) comp.apply(cv::gin(in_mat[0], in_mat[1], in_mat[2], in_mat[3]), cv::gout(out_mat[0], out_mat[1]), cv::compile_args(getConfig(), cv::gapi::use_only{cv::gapi::core::plaidml::kernels()})); ////////////////////////////// OpenCV ///////////////////////////////////// cv::add(in_mat[0], in_mat[3], ref_mat[0], cv::noArray(), type); cv::add(in_mat[1], in_mat[2], ref_mat[1], cv::noArray(), type); EXPECT_EQ(0, cv::norm(out_mat[0], ref_mat[0])); EXPECT_EQ(0, cv::norm(out_mat[1], ref_mat[1])); } } // namespace opencv_test #endif // HAVE_PLAIDML