/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /****************************************************************************************\ A part of the file implements TIFF reader on base of libtiff library (see otherlibs/_graphics/readme.txt for copyright notice) \****************************************************************************************/ #include "precomp.hpp" #include "grfmt_tiff.hpp" #include #include namespace cv { static const char fmtSignTiffII[] = "II\x2a\x00"; #ifdef HAVE_TIFF static const char fmtSignTiffMM[] = "MM\x00\x2a"; #include "tiff.h" #include "tiffio.h" static int grfmt_tiff_err_handler_init = 0; static void GrFmtSilentTIFFErrorHandler( const char*, const char*, va_list ) {} TiffDecoder::TiffDecoder() { m_tif = 0; if( !grfmt_tiff_err_handler_init ) { grfmt_tiff_err_handler_init = 1; TIFFSetErrorHandler( GrFmtSilentTIFFErrorHandler ); TIFFSetWarningHandler( GrFmtSilentTIFFErrorHandler ); } m_hdr = false; } void TiffDecoder::close() { if( m_tif ) { TIFF* tif = (TIFF*)m_tif; TIFFClose( tif ); m_tif = 0; } } TiffDecoder::~TiffDecoder() { close(); } size_t TiffDecoder::signatureLength() const { return 4; } bool TiffDecoder::checkSignature( const String& signature ) const { return signature.size() >= 4 && (memcmp(signature.c_str(), fmtSignTiffII, 4) == 0 || memcmp(signature.c_str(), fmtSignTiffMM, 4) == 0); } int TiffDecoder::normalizeChannelsNumber(int channels) const { return channels > 4 ? 4 : channels; } ImageDecoder TiffDecoder::newDecoder() const { return makePtr(); } bool TiffDecoder::readHeader() { bool result = false; TIFF* tif = static_cast(m_tif); if (!m_tif) { // TIFFOpen() mode flags are different to fopen(). A 'b' in mode "rb" has no effect when reading. // http://www.remotesensing.org/libtiff/man/TIFFOpen.3tiff.html tif = TIFFOpen(m_filename.c_str(), "r"); } if( tif ) { uint32 wdth = 0, hght = 0; uint16 photometric = 0; m_tif = tif; if( TIFFGetField( tif, TIFFTAG_IMAGEWIDTH, &wdth ) && TIFFGetField( tif, TIFFTAG_IMAGELENGTH, &hght ) && TIFFGetField( tif, TIFFTAG_PHOTOMETRIC, &photometric )) { uint16 bpp=8, ncn = photometric > 1 ? 3 : 1; TIFFGetField( tif, TIFFTAG_BITSPERSAMPLE, &bpp ); TIFFGetField( tif, TIFFTAG_SAMPLESPERPIXEL, &ncn ); m_width = wdth; m_height = hght; if((bpp == 32 && ncn == 3) || photometric == PHOTOMETRIC_LOGLUV) { m_type = CV_32FC3; m_hdr = true; return true; } m_hdr = false; if( bpp > 8 && ((photometric != 2 && photometric != 1) || (ncn != 1 && ncn != 3 && ncn != 4))) bpp = 8; int wanted_channels = normalizeChannelsNumber(ncn); switch(bpp) { case 8: m_type = CV_MAKETYPE(CV_8U, photometric > 1 ? wanted_channels : 1); break; case 16: m_type = CV_MAKETYPE(CV_16U, photometric > 1 ? wanted_channels : 1); break; case 32: m_type = CV_MAKETYPE(CV_32F, photometric > 1 ? 3 : 1); break; case 64: m_type = CV_MAKETYPE(CV_64F, photometric > 1 ? 3 : 1); break; default: result = false; } result = true; } } if( !result ) close(); return result; } bool TiffDecoder::nextPage() { // Prepare the next page, if any. return m_tif && TIFFReadDirectory(static_cast(m_tif)) && readHeader(); } bool TiffDecoder::readData( Mat& img ) { if(m_hdr && img.type() == CV_32FC3) { return readHdrData(img); } bool result = false; bool color = img.channels() > 1; uchar* data = img.ptr(); if( img.depth() != CV_8U && img.depth() != CV_16U && img.depth() != CV_32F && img.depth() != CV_64F ) return false; if( m_tif && m_width && m_height ) { TIFF* tif = (TIFF*)m_tif; uint32 tile_width0 = m_width, tile_height0 = 0; int x, y, i; int is_tiled = TIFFIsTiled(tif); uint16 photometric; TIFFGetField( tif, TIFFTAG_PHOTOMETRIC, &photometric ); uint16 bpp = 8, ncn = photometric > 1 ? 3 : 1; TIFFGetField( tif, TIFFTAG_BITSPERSAMPLE, &bpp ); TIFFGetField( tif, TIFFTAG_SAMPLESPERPIXEL, &ncn ); const int bitsPerByte = 8; int dst_bpp = (int)(img.elemSize1() * bitsPerByte); int wanted_channels = normalizeChannelsNumber(img.channels()); if(dst_bpp == 8) { char errmsg[1024]; if(!TIFFRGBAImageOK( tif, errmsg )) { close(); return false; } } if( (!is_tiled) || (is_tiled && TIFFGetField( tif, TIFFTAG_TILEWIDTH, &tile_width0 ) && TIFFGetField( tif, TIFFTAG_TILELENGTH, &tile_height0 ))) { if(!is_tiled) TIFFGetField( tif, TIFFTAG_ROWSPERSTRIP, &tile_height0 ); if( tile_width0 <= 0 ) tile_width0 = m_width; if( tile_height0 <= 0 || (!is_tiled && tile_height0 == std::numeric_limits::max()) ) tile_height0 = m_height; const size_t buffer_size = bpp * ncn * tile_height0 * tile_width0; AutoBuffer _buffer( buffer_size ); uchar* buffer = _buffer; ushort* buffer16 = (ushort*)buffer; float* buffer32 = (float*)buffer; double* buffer64 = (double*)buffer; int tileidx = 0; for( y = 0; y < m_height; y += tile_height0, data += img.step*tile_height0 ) { int tile_height = tile_height0; if( y + tile_height > m_height ) tile_height = m_height - y; for( x = 0; x < m_width; x += tile_width0, tileidx++ ) { int tile_width = tile_width0, ok; if( x + tile_width > m_width ) tile_width = m_width - x; switch(dst_bpp) { case 8: { uchar * bstart = buffer; if( !is_tiled ) ok = TIFFReadRGBAStrip( tif, y, (uint32*)buffer ); else { ok = TIFFReadRGBATile( tif, x, y, (uint32*)buffer ); //Tiles fill the buffer from the bottom up bstart += (tile_height0 - tile_height) * tile_width0 * 4; } if( !ok ) { close(); return false; } for( i = 0; i < tile_height; i++ ) if( color ) { if (wanted_channels == 4) { icvCvt_BGRA2RGBA_8u_C4R( bstart + i*tile_width0*4, 0, data + x*4 + img.step*(tile_height - i - 1), 0, cvSize(tile_width,1) ); } else { icvCvt_BGRA2BGR_8u_C4C3R( bstart + i*tile_width0*4, 0, data + x*3 + img.step*(tile_height - i - 1), 0, cvSize(tile_width,1), 2 ); } } else icvCvt_BGRA2Gray_8u_C4C1R( bstart + i*tile_width0*4, 0, data + x + img.step*(tile_height - i - 1), 0, cvSize(tile_width,1), 2 ); break; } case 16: { if( !is_tiled ) ok = (int)TIFFReadEncodedStrip( tif, tileidx, (uint32*)buffer, buffer_size ) >= 0; else ok = (int)TIFFReadEncodedTile( tif, tileidx, (uint32*)buffer, buffer_size ) >= 0; if( !ok ) { close(); return false; } for( i = 0; i < tile_height; i++ ) { if( color ) { if( ncn == 1 ) { icvCvt_Gray2BGR_16u_C1C3R(buffer16 + i*tile_width0*ncn, 0, (ushort*)(data + img.step*i) + x*3, 0, cvSize(tile_width,1) ); } else if( ncn == 3 ) { icvCvt_RGB2BGR_16u_C3R(buffer16 + i*tile_width0*ncn, 0, (ushort*)(data + img.step*i) + x*3, 0, cvSize(tile_width,1) ); } else if (ncn == 4) { if (wanted_channels == 4) { icvCvt_BGRA2RGBA_16u_C4R(buffer16 + i*tile_width0*ncn, 0, (ushort*)(data + img.step*i) + x * 4, 0, cvSize(tile_width, 1)); } else { icvCvt_BGRA2BGR_16u_C4C3R(buffer16 + i*tile_width0*ncn, 0, (ushort*)(data + img.step*i) + x * 3, 0, cvSize(tile_width, 1), 2); } } else { icvCvt_BGRA2BGR_16u_C4C3R(buffer16 + i*tile_width0*ncn, 0, (ushort*)(data + img.step*i) + x*3, 0, cvSize(tile_width,1), 2 ); } } else { if( ncn == 1 ) { memcpy((ushort*)(data + img.step*i)+x, buffer16 + i*tile_width0*ncn, tile_width*sizeof(buffer16[0])); } else { icvCvt_BGRA2Gray_16u_CnC1R(buffer16 + i*tile_width0*ncn, 0, (ushort*)(data + img.step*i) + x, 0, cvSize(tile_width,1), ncn, 2 ); } } } break; } case 32: case 64: { if( !is_tiled ) ok = (int)TIFFReadEncodedStrip( tif, tileidx, buffer, buffer_size ) >= 0; else ok = (int)TIFFReadEncodedTile( tif, tileidx, buffer, buffer_size ) >= 0; if( !ok || ncn != 1 ) { close(); return false; } for( i = 0; i < tile_height; i++ ) { if(dst_bpp == 32) { memcpy((float*)(data + img.step*i)+x, buffer32 + i*tile_width0*ncn, tile_width*sizeof(buffer32[0])); } else { memcpy((double*)(data + img.step*i)+x, buffer64 + i*tile_width0*ncn, tile_width*sizeof(buffer64[0])); } } break; } default: { close(); return false; } } } } result = true; } } return result; } bool TiffDecoder::readHdrData(Mat& img) { int rows_per_strip = 0, photometric = 0; if(!m_tif) { return false; } TIFF *tif = static_cast(m_tif); TIFFGetField(tif, TIFFTAG_ROWSPERSTRIP, &rows_per_strip); TIFFGetField( tif, TIFFTAG_PHOTOMETRIC, &photometric ); TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_FLOAT); int size = 3 * m_width * m_height * sizeof (float); tstrip_t strip_size = 3 * m_width * rows_per_strip; float *ptr = img.ptr(); for (tstrip_t i = 0; i < TIFFNumberOfStrips(tif); i++, ptr += strip_size) { TIFFReadEncodedStrip(tif, i, ptr, size); size -= strip_size * sizeof(float); } close(); if(photometric == PHOTOMETRIC_LOGLUV) { cvtColor(img, img, COLOR_XYZ2BGR); } else { cvtColor(img, img, COLOR_RGB2BGR); } return true; } #endif ////////////////////////////////////////////////////////////////////////////////////////// TiffEncoder::TiffEncoder() { m_description = "TIFF Files (*.tiff;*.tif)"; #ifdef HAVE_TIFF m_buf_supported = false; #else m_buf_supported = true; #endif } TiffEncoder::~TiffEncoder() { } ImageEncoder TiffEncoder::newEncoder() const { return makePtr(); } bool TiffEncoder::isFormatSupported( int depth ) const { #ifdef HAVE_TIFF return depth == CV_8U || depth == CV_16U || depth == CV_32F; #else return depth == CV_8U || depth == CV_16U; #endif } void TiffEncoder::writeTag( WLByteStream& strm, TiffTag tag, TiffFieldType fieldType, int count, int value ) { strm.putWord( tag ); strm.putWord( fieldType ); strm.putDWord( count ); strm.putDWord( value ); } #ifdef HAVE_TIFF static void readParam(const std::vector& params, int key, int& value) { for(size_t i = 0; i + 1 < params.size(); i += 2) if(params[i] == key) { value = params[i+1]; break; } } bool TiffEncoder::writeLibTiff( const Mat& img, const std::vector& params) { int channels = img.channels(); int width = img.cols, height = img.rows; int depth = img.depth(); int bitsPerChannel = -1; switch (depth) { case CV_8U: { bitsPerChannel = 8; break; } case CV_16U: { bitsPerChannel = 16; break; } default: { return false; } } const int bitsPerByte = 8; size_t fileStep = (width * channels * bitsPerChannel) / bitsPerByte; int rowsPerStrip = (int)((1 << 13)/fileStep); readParam(params, TIFFTAG_ROWSPERSTRIP, rowsPerStrip); if( rowsPerStrip < 1 ) rowsPerStrip = 1; if( rowsPerStrip > height ) rowsPerStrip = height; // do NOT put "wb" as the mode, because the b means "big endian" mode, not "binary" mode. // http://www.remotesensing.org/libtiff/man/TIFFOpen.3tiff.html TIFF* pTiffHandle = TIFFOpen(m_filename.c_str(), "w"); if (!pTiffHandle) { return false; } // defaults for now, maybe base them on params in the future int compression = COMPRESSION_LZW; int predictor = PREDICTOR_HORIZONTAL; readParam(params, TIFFTAG_COMPRESSION, compression); readParam(params, TIFFTAG_PREDICTOR, predictor); int colorspace = channels > 1 ? PHOTOMETRIC_RGB : PHOTOMETRIC_MINISBLACK; if ( !TIFFSetField(pTiffHandle, TIFFTAG_IMAGEWIDTH, width) || !TIFFSetField(pTiffHandle, TIFFTAG_IMAGELENGTH, height) || !TIFFSetField(pTiffHandle, TIFFTAG_BITSPERSAMPLE, bitsPerChannel) || !TIFFSetField(pTiffHandle, TIFFTAG_COMPRESSION, compression) || !TIFFSetField(pTiffHandle, TIFFTAG_PHOTOMETRIC, colorspace) || !TIFFSetField(pTiffHandle, TIFFTAG_SAMPLESPERPIXEL, channels) || !TIFFSetField(pTiffHandle, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG) || !TIFFSetField(pTiffHandle, TIFFTAG_ROWSPERSTRIP, rowsPerStrip) ) { TIFFClose(pTiffHandle); return false; } if (compression != COMPRESSION_NONE && !TIFFSetField(pTiffHandle, TIFFTAG_PREDICTOR, predictor) ) { TIFFClose(pTiffHandle); return false; } // row buffer, because TIFFWriteScanline modifies the original data! size_t scanlineSize = TIFFScanlineSize(pTiffHandle); AutoBuffer _buffer(scanlineSize+32); uchar* buffer = _buffer; if (!buffer) { TIFFClose(pTiffHandle); return false; } for (int y = 0; y < height; ++y) { switch(channels) { case 1: { memcpy(buffer, img.ptr(y), scanlineSize); break; } case 3: { if (depth == CV_8U) icvCvt_BGR2RGB_8u_C3R( img.ptr(y), 0, buffer, 0, cvSize(width,1) ); else icvCvt_BGR2RGB_16u_C3R( img.ptr(y), 0, (ushort*)buffer, 0, cvSize(width,1) ); break; } case 4: { if (depth == CV_8U) icvCvt_BGRA2RGBA_8u_C4R( img.ptr(y), 0, buffer, 0, cvSize(width,1) ); else icvCvt_BGRA2RGBA_16u_C4R( img.ptr(y), 0, (ushort*)buffer, 0, cvSize(width,1) ); break; } default: { TIFFClose(pTiffHandle); return false; } } int writeResult = TIFFWriteScanline(pTiffHandle, buffer, y, 0); if (writeResult != 1) { TIFFClose(pTiffHandle); return false; } } TIFFClose(pTiffHandle); return true; } bool TiffEncoder::writeHdr(const Mat& _img) { Mat img; cvtColor(_img, img, COLOR_BGR2XYZ); TIFF* tif = TIFFOpen(m_filename.c_str(), "w"); if (!tif) { return false; } TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, img.cols); TIFFSetField(tif, TIFFTAG_IMAGELENGTH, img.rows); TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3); TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_SGILOG); TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_LOGLUV); TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_FLOAT); TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP, 1); int strip_size = 3 * img.cols; float *ptr = const_cast(img.ptr()); for (int i = 0; i < img.rows; i++, ptr += strip_size) { TIFFWriteEncodedStrip(tif, i, ptr, strip_size * sizeof(float)); } TIFFClose(tif); return true; } #endif #ifdef HAVE_TIFF bool TiffEncoder::write( const Mat& img, const std::vector& params) #else bool TiffEncoder::write( const Mat& img, const std::vector& /*params*/) #endif { int channels = img.channels(); int width = img.cols, height = img.rows; int depth = img.depth(); #ifdef HAVE_TIFF if(img.type() == CV_32FC3) { return writeHdr(img); } #endif if (depth != CV_8U && depth != CV_16U) return false; int bytesPerChannel = depth == CV_8U ? 1 : 2; int fileStep = width * channels * bytesPerChannel; WLByteStream strm; if( m_buf ) { if( !strm.open(*m_buf) ) return false; } else { #ifdef HAVE_TIFF return writeLibTiff(img, params); #else if( !strm.open(m_filename) ) return false; #endif } int rowsPerStrip = (1 << 13)/fileStep; if( rowsPerStrip < 1 ) rowsPerStrip = 1; if( rowsPerStrip > height ) rowsPerStrip = height; int i, stripCount = (height + rowsPerStrip - 1) / rowsPerStrip; if( m_buf ) m_buf->reserve( alignSize(stripCount*8 + fileStep*height + 256, 256) ); /*#if defined _DEBUG || !defined WIN32 int uncompressedRowSize = rowsPerStrip * fileStep; #endif*/ int directoryOffset = 0; AutoBuffer stripOffsets(stripCount); AutoBuffer stripCounts(stripCount); AutoBuffer _buffer(fileStep+32); uchar* buffer = _buffer; int stripOffsetsOffset = 0; int stripCountsOffset = 0; int bitsPerSample = 8 * bytesPerChannel; int y = 0; strm.putBytes( fmtSignTiffII, 4 ); strm.putDWord( directoryOffset ); // write an image data first (the most reasonable way // for compressed images) for( i = 0; i < stripCount; i++ ) { int limit = y + rowsPerStrip; if( limit > height ) limit = height; stripOffsets[i] = strm.getPos(); for( ; y < limit; y++ ) { if( channels == 3 ) { if (depth == CV_8U) icvCvt_BGR2RGB_8u_C3R( img.ptr(y), 0, buffer, 0, cvSize(width,1) ); else icvCvt_BGR2RGB_16u_C3R( img.ptr(y), 0, (ushort*)buffer, 0, cvSize(width,1) ); } else { if( channels == 4 ) { if (depth == CV_8U) icvCvt_BGRA2RGBA_8u_C4R( img.ptr(y), 0, buffer, 0, cvSize(width,1) ); else icvCvt_BGRA2RGBA_16u_C4R( img.ptr(y), 0, (ushort*)buffer, 0, cvSize(width,1) ); } } strm.putBytes( channels > 1 ? buffer : img.ptr(y), fileStep ); } stripCounts[i] = (short)(strm.getPos() - stripOffsets[i]); /*assert( stripCounts[i] == uncompressedRowSize || stripCounts[i] < uncompressedRowSize && i == stripCount - 1);*/ } if( stripCount > 2 ) { stripOffsetsOffset = strm.getPos(); for( i = 0; i < stripCount; i++ ) strm.putDWord( stripOffsets[i] ); stripCountsOffset = strm.getPos(); for( i = 0; i < stripCount; i++ ) strm.putWord( stripCounts[i] ); } else if(stripCount == 2) { stripOffsetsOffset = strm.getPos(); for (i = 0; i < stripCount; i++) { strm.putDWord (stripOffsets [i]); } stripCountsOffset = stripCounts [0] + (stripCounts [1] << 16); } else { stripOffsetsOffset = stripOffsets[0]; stripCountsOffset = stripCounts[0]; } if( channels > 1 ) { int bitsPerSamplePos = strm.getPos(); strm.putWord(bitsPerSample); strm.putWord(bitsPerSample); strm.putWord(bitsPerSample); if( channels == 4 ) strm.putWord(bitsPerSample); bitsPerSample = bitsPerSamplePos; } directoryOffset = strm.getPos(); // write header strm.putWord( 9 ); /* warning: specification 5.0 of Tiff want to have tags in ascending order. This is a non-fatal error, but this cause warning with some tools. So, keep this in ascending order */ writeTag( strm, TIFF_TAG_WIDTH, TIFF_TYPE_LONG, 1, width ); writeTag( strm, TIFF_TAG_HEIGHT, TIFF_TYPE_LONG, 1, height ); writeTag( strm, TIFF_TAG_BITS_PER_SAMPLE, TIFF_TYPE_SHORT, channels, bitsPerSample ); writeTag( strm, TIFF_TAG_COMPRESSION, TIFF_TYPE_LONG, 1, TIFF_UNCOMP ); writeTag( strm, TIFF_TAG_PHOTOMETRIC, TIFF_TYPE_SHORT, 1, channels > 1 ? 2 : 1 ); writeTag( strm, TIFF_TAG_STRIP_OFFSETS, TIFF_TYPE_LONG, stripCount, stripOffsetsOffset ); writeTag( strm, TIFF_TAG_SAMPLES_PER_PIXEL, TIFF_TYPE_SHORT, 1, channels ); writeTag( strm, TIFF_TAG_ROWS_PER_STRIP, TIFF_TYPE_LONG, 1, rowsPerStrip ); writeTag( strm, TIFF_TAG_STRIP_COUNTS, stripCount > 1 ? TIFF_TYPE_SHORT : TIFF_TYPE_LONG, stripCount, stripCountsOffset ); strm.putDWord(0); strm.close(); if( m_buf ) { (*m_buf)[4] = (uchar)directoryOffset; (*m_buf)[5] = (uchar)(directoryOffset >> 8); (*m_buf)[6] = (uchar)(directoryOffset >> 16); (*m_buf)[7] = (uchar)(directoryOffset >> 24); } else { // write directory offset FILE* f = fopen( m_filename.c_str(), "r+b" ); buffer[0] = (uchar)directoryOffset; buffer[1] = (uchar)(directoryOffset >> 8); buffer[2] = (uchar)(directoryOffset >> 16); buffer[3] = (uchar)(directoryOffset >> 24); fseek( f, 4, SEEK_SET ); fwrite( buffer, 1, 4, f ); fclose(f); } return true; } }