/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_GPUIMGPROC_HPP__ #define __OPENCV_GPUIMGPROC_HPP__ #ifndef __cplusplus # error gpuimgproc.hpp header must be compiled as C++ #endif #include "opencv2/core/gpumat.hpp" #include "opencv2/core/base.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/gpufilters.hpp" namespace cv { namespace gpu { /////////////////////////// Color Processing /////////////////////////// //! converts image from one color space to another CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null()); enum { // Bayer Demosaicing (Malvar, He, and Cutler) COLOR_BayerBG2BGR_MHT = 256, COLOR_BayerGB2BGR_MHT = 257, COLOR_BayerRG2BGR_MHT = 258, COLOR_BayerGR2BGR_MHT = 259, COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT, COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT, COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT, COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT, COLOR_BayerBG2GRAY_MHT = 260, COLOR_BayerGB2GRAY_MHT = 261, COLOR_BayerRG2GRAY_MHT = 262, COLOR_BayerGR2GRAY_MHT = 263 }; CV_EXPORTS void demosaicing(const GpuMat& src, GpuMat& dst, int code, int dcn = -1, Stream& stream = Stream::Null()); //! swap channels //! dstOrder - Integer array describing how channel values are permutated. The n-th entry //! of the array contains the number of the channel that is stored in the n-th channel of //! the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR //! channel order. CV_EXPORTS void swapChannels(GpuMat& image, const int dstOrder[4], Stream& stream = Stream::Null()); //! Routines for correcting image color gamma CV_EXPORTS void gammaCorrection(const GpuMat& src, GpuMat& dst, bool forward = true, Stream& stream = Stream::Null()); enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL, ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL}; //! Composite two images using alpha opacity values contained in each image //! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types CV_EXPORTS void alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream = Stream::Null()); ////////////////////////////// Histogram /////////////////////////////// //! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type. CV_EXPORTS void evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel); //! Calculates histogram with evenly distributed bins for signle channel source. //! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types. //! Output hist will have one row and histSize cols and CV_32SC1 type. CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); //! Calculates histogram with evenly distributed bins for four-channel source. //! All channels of source are processed separately. //! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types. //! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type. CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()); CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()); //! Calculates histogram with bins determined by levels array. //! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. //! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types. //! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type. CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null()); CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream = Stream::Null()); //! Calculates histogram with bins determined by levels array. //! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. //! All channels of source are processed separately. //! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types. //! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type. CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null()); CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream = Stream::Null()); //! Calculates histogram for 8u one channel image //! Output hist will have one row, 256 cols and CV32SC1 type. CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null()); CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null()); //! normalizes the grayscale image brightness and contrast by normalizing its histogram CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()); CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null()); CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null()); class CV_EXPORTS CLAHE : public cv::CLAHE { public: using cv::CLAHE::apply; virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0; }; CV_EXPORTS Ptr createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); //////////////////////////////// Canny //////////////////////////////// struct CV_EXPORTS CannyBuf { void create(const Size& image_size, int apperture_size = 3); void release(); GpuMat dx, dy; GpuMat mag; GpuMat map; GpuMat st1, st2; Ptr filterDX, filterDY; }; CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); CV_EXPORTS void Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false); CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false); /////////////////////////// Hough Transform //////////////////////////// struct HoughLinesBuf { GpuMat accum; GpuMat list; }; CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096); CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096); CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray()); //! finds line segments in the black-n-white image using probabalistic Hough transform CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096); struct HoughCirclesBuf { GpuMat edges; GpuMat accum; GpuMat list; CannyBuf cannyBuf; }; CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096); CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096); CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles); //! finds arbitrary template in the grayscale image using Generalized Hough Transform //! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. //! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. class CV_EXPORTS GeneralizedHough_GPU : public cv::Algorithm { public: static Ptr create(int method); virtual ~GeneralizedHough_GPU(); //! set template to search void setTemplate(const GpuMat& templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1)); void setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter = Point(-1, -1)); //! find template on image void detect(const GpuMat& image, GpuMat& positions, int cannyThreshold = 100); void detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions); void download(const GpuMat& d_positions, OutputArray h_positions, OutputArray h_votes = noArray()); void release(); protected: virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0; virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) = 0; virtual void releaseImpl() = 0; private: GpuMat edges_; CannyBuf cannyBuf_; }; ////////////////////////// Corners Detection /////////////////////////// //! computes Harris cornerness criteria at each image pixel CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101); CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101); CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101, Stream& stream = Stream::Null()); //! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101); CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType=BORDER_REFLECT101); CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType=BORDER_REFLECT101, Stream& stream = Stream::Null()); ////////////////////////// Feature Detection /////////////////////////// class CV_EXPORTS GoodFeaturesToTrackDetector_GPU { public: explicit GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04); //! return 1 rows matrix with CV_32FC2 type void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat()); int maxCorners; double qualityLevel; double minDistance; int blockSize; bool useHarrisDetector; double harrisK; void releaseMemory() { Dx_.release(); Dy_.release(); buf_.release(); eig_.release(); minMaxbuf_.release(); tmpCorners_.release(); } private: GpuMat Dx_; GpuMat Dy_; GpuMat buf_; GpuMat eig_; GpuMat minMaxbuf_; GpuMat tmpCorners_; }; inline GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners_, double qualityLevel_, double minDistance_, int blockSize_, bool useHarrisDetector_, double harrisK_) { maxCorners = maxCorners_; qualityLevel = qualityLevel_; minDistance = minDistance_; blockSize = blockSize_; useHarrisDetector = useHarrisDetector_; harrisK = harrisK_; } ///////////////////////////// Mean Shift ////////////////////////////// //! Does mean shift filtering on GPU. CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream = Stream::Null()); //! Does mean shift procedure on GPU. CV_EXPORTS void meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream = Stream::Null()); //! Does mean shift segmentation with elimination of small regions. CV_EXPORTS void meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); /////////////////////////// Match Template //////////////////////////// struct CV_EXPORTS MatchTemplateBuf { Size user_block_size; GpuMat imagef, templf; std::vector images; std::vector image_sums; std::vector image_sqsums; }; //! computes the proximity map for the raster template and the image where the template is searched for CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null()); //! computes the proximity map for the raster template and the image where the template is searched for CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null()); ////////////////////////// Bilateral Filter /////////////////////////// //! Performa bilateral filtering of passsed image CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null()); ///////////////////////////// Blending //////////////////////////////// //! performs linear blending of two images //! to avoid accuracy errors sum of weigths shouldn't be very close to zero CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2, GpuMat& result, Stream& stream = Stream::Null()); }} // namespace cv { namespace gpu { #endif /* __OPENCV_GPUIMGPROC_HPP__ */