/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #ifdef HAVE_OPENCL using namespace cv; using namespace cv::ocl; using namespace cvtest; using namespace testing; using namespace std; ////////////////////////////////////////////////////// // GoodFeaturesToTrack namespace { IMPLEMENT_PARAM_CLASS(MinDistance, double) } PARAM_TEST_CASE(GoodFeaturesToTrack, MinDistance) { double minDistance; virtual void SetUp() { minDistance = GET_PARAM(0); } }; OCL_TEST_P(GoodFeaturesToTrack, Accuracy) { cv::Mat frame = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame.empty()); int maxCorners = 1000; double qualityLevel = 0.01; cv::ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance); cv::ocl::oclMat d_pts; detector(oclMat(frame), d_pts); ASSERT_FALSE(d_pts.empty()); std::vector pts(d_pts.cols); detector.downloadPoints(d_pts, pts); std::vector pts_gold; cv::goodFeaturesToTrack(frame, pts_gold, maxCorners, qualityLevel, minDistance); ASSERT_EQ(pts_gold.size(), pts.size()); size_t mistmatch = 0; for (size_t i = 0; i < pts.size(); ++i) { cv::Point2i a = pts_gold[i]; cv::Point2i b = pts[i]; bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; if (!eq) ++mistmatch; } double bad_ratio = static_cast(mistmatch) / pts.size(); ASSERT_LE(bad_ratio, 0.01); } OCL_TEST_P(GoodFeaturesToTrack, EmptyCorners) { int maxCorners = 1000; double qualityLevel = 0.01; cv::ocl::GoodFeaturesToTrackDetector_OCL detector(maxCorners, qualityLevel, minDistance); cv::ocl::oclMat src(100, 100, CV_8UC1, cv::Scalar::all(0)); cv::ocl::oclMat corners(1, maxCorners, CV_32FC2); detector(src, corners); ASSERT_TRUE(corners.empty()); } INSTANTIATE_TEST_CASE_P(OCL_Video, GoodFeaturesToTrack, testing::Values(MinDistance(0.0), MinDistance(3.0))); ////////////////////////////////////////////////////////////////////////// PARAM_TEST_CASE(TVL1, bool) { bool useRoi; virtual void SetUp() { useRoi = GET_PARAM(0); } }; OCL_TEST_P(TVL1, Accuracy) { cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("gpu/opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); cv::ocl::OpticalFlowDual_TVL1_OCL d_alg; cv::Mat flowx = randomMat(frame0.size(), CV_32FC1, 0, 0, useRoi); cv::Mat flowy = randomMat(frame0.size(), CV_32FC1, 0, 0, useRoi); cv::ocl::oclMat d_flowx(flowx), d_flowy(flowy); d_alg(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy); cv::Ptr alg = cv::createOptFlow_DualTVL1(); cv::Mat flow; alg->calc(frame0, frame1, flow); cv::Mat gold[2]; cv::split(flow, gold); EXPECT_MAT_SIMILAR(gold[0], d_flowx, 3e-3); EXPECT_MAT_SIMILAR(gold[1], d_flowy, 3e-3); } INSTANTIATE_TEST_CASE_P(OCL_Video, TVL1, Values(false, true)); ///////////////////////////////////////////////////////////////////////////////////////////////// // PyrLKOpticalFlow PARAM_TEST_CASE(Sparse, bool, bool) { bool useGray; bool UseSmart; virtual void SetUp() { UseSmart = GET_PARAM(0); useGray = GET_PARAM(1); } }; OCL_TEST_P(Sparse, Mat) { cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("gpu/opticalflow/rubberwhale2.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame1.empty()); cv::Mat gray_frame; if (useGray) gray_frame = frame0; else cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); std::vector pts; cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0); cv::ocl::oclMat d_pts; cv::Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void *)&pts[0]); d_pts.upload(pts_mat); cv::ocl::PyrLKOpticalFlow pyrLK; cv::ocl::oclMat oclFrame0; cv::ocl::oclMat oclFrame1; cv::ocl::oclMat d_nextPts; cv::ocl::oclMat d_status; cv::ocl::oclMat d_err; oclFrame0 = frame0; oclFrame1 = frame1; pyrLK.sparse(oclFrame0, oclFrame1, d_pts, d_nextPts, d_status, &d_err); std::vector nextPts(d_nextPts.cols); cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void *)&nextPts[0]); d_nextPts.download(nextPts_mat); std::vector status(d_status.cols); cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void *)&status[0]); d_status.download(status_mat); std::vector err(d_err.cols); cv::Mat err_mat(1, d_err.cols, CV_32FC1, (void*)&err[0]); d_err.download(err_mat); std::vector nextPts_gold; std::vector status_gold; std::vector err_gold; cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, err_gold); ASSERT_EQ(nextPts_gold.size(), nextPts.size()); ASSERT_EQ(status_gold.size(), status.size()); size_t mistmatch = 0; for (size_t i = 0; i < nextPts.size(); ++i) { if (status[i] != status_gold[i]) { ++mistmatch; continue; } if (status[i]) { cv::Point2i a = nextPts[i]; cv::Point2i b = nextPts_gold[i]; bool eq = std::abs(a.x - b.x) < 1 && std::abs(a.y - b.y) < 1; //float errdiff = std::abs(err[i] - err_gold[i]); float errdiff = 0.0f; if (!eq || errdiff > 1e-1) ++mistmatch; } } double bad_ratio = static_cast(mistmatch) / (nextPts.size()); ASSERT_LE(bad_ratio, 0.02f); } INSTANTIATE_TEST_CASE_P(OCL_Video, Sparse, Combine( Values(false, true), Values(false, true))); ////////////////////////////////////////////////////// // FarnebackOpticalFlow namespace { IMPLEMENT_PARAM_CLASS(PyrScale, double) IMPLEMENT_PARAM_CLASS(PolyN, int) CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN) IMPLEMENT_PARAM_CLASS(UseInitFlow, bool) } PARAM_TEST_CASE(Farneback, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow) { double pyrScale; int polyN; int flags; bool useInitFlow; virtual void SetUp() { pyrScale = GET_PARAM(0); polyN = GET_PARAM(1); flags = GET_PARAM(2); useInitFlow = GET_PARAM(3); } }; OCL_TEST_P(Farneback, Accuracy) { cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("gpu/opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); double polySigma = polyN <= 5 ? 1.1 : 1.5; cv::ocl::FarnebackOpticalFlow farn; farn.pyrScale = pyrScale; farn.polyN = polyN; farn.polySigma = polySigma; farn.flags = flags; cv::ocl::oclMat d_flowx, d_flowy; farn(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy); cv::Mat flow; if (useInitFlow) { cv::Mat flowxy[] = {cv::Mat(d_flowx), cv::Mat(d_flowy)}; cv::merge(flowxy, 2, flow); farn.flags |= cv::OPTFLOW_USE_INITIAL_FLOW; farn(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy); } cv::calcOpticalFlowFarneback( frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize, farn.numIters, farn.polyN, farn.polySigma, farn.flags); std::vector flowxy; cv::split(flow, flowxy); EXPECT_MAT_SIMILAR(flowxy[0], d_flowx, 0.1); EXPECT_MAT_SIMILAR(flowxy[1], d_flowy, 0.1); } INSTANTIATE_TEST_CASE_P(OCL_Video, Farneback, testing::Combine( testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)), testing::Values(PolyN(5), PolyN(7)), testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)), testing::Values(UseInitFlow(false), UseInitFlow(true)))); #endif // HAVE_OPENCL