/* dlarrk.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int dlarrk_(integer *n, integer *iw, doublereal *gl, doublereal *gu, doublereal *d__, doublereal *e2, doublereal *pivmin, doublereal *reltol, doublereal *w, doublereal *werr, integer *info) { /* System generated locals */ integer i__1; doublereal d__1, d__2; /* Builtin functions */ double log(doublereal); /* Local variables */ integer i__, it; doublereal mid, eps, tmp1, tmp2, left, atoli, right; integer itmax; doublereal rtoli, tnorm; extern doublereal dlamch_(char *); integer negcnt; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLARRK computes one eigenvalue of a symmetric tridiagonal */ /* matrix T to suitable accuracy. This is an auxiliary code to be */ /* called from DSTEMR. */ /* To avoid overflow, the matrix must be scaled so that its */ /* largest element is no greater than overflow**(1/2) * */ /* underflow**(1/4) in absolute value, and for greatest */ /* accuracy, it should not be much smaller than that. */ /* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */ /* Matrix", Report CS41, Computer Science Dept., Stanford */ /* University, July 21, 1966. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the tridiagonal matrix T. N >= 0. */ /* IW (input) INTEGER */ /* The index of the eigenvalues to be returned. */ /* GL (input) DOUBLE PRECISION */ /* GU (input) DOUBLE PRECISION */ /* An upper and a lower bound on the eigenvalue. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The n diagonal elements of the tridiagonal matrix T. */ /* E2 (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) squared off-diagonal elements of the tridiagonal matrix T. */ /* PIVMIN (input) DOUBLE PRECISION */ /* The minimum pivot allowed in the Sturm sequence for T. */ /* RELTOL (input) DOUBLE PRECISION */ /* The minimum relative width of an interval. When an interval */ /* is narrower than RELTOL times the larger (in */ /* magnitude) endpoint, then it is considered to be */ /* sufficiently small, i.e., converged. Note: this should */ /* always be at least radix*machine epsilon. */ /* W (output) DOUBLE PRECISION */ /* WERR (output) DOUBLE PRECISION */ /* The error bound on the corresponding eigenvalue approximation */ /* in W. */ /* INFO (output) INTEGER */ /* = 0: Eigenvalue converged */ /* = -1: Eigenvalue did NOT converge */ /* Internal Parameters */ /* =================== */ /* FUDGE DOUBLE PRECISION, default = 2 */ /* A "fudge factor" to widen the Gershgorin intervals. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Get machine constants */ /* Parameter adjustments */ --e2; --d__; /* Function Body */ eps = dlamch_("P"); /* Computing MAX */ d__1 = abs(*gl), d__2 = abs(*gu); tnorm = max(d__1,d__2); rtoli = *reltol; atoli = *pivmin * 4.; itmax = (integer) ((log(tnorm + *pivmin) - log(*pivmin)) / log(2.)) + 2; *info = -1; left = *gl - tnorm * 2. * eps * *n - *pivmin * 4.; right = *gu + tnorm * 2. * eps * *n + *pivmin * 4.; it = 0; L10: /* Check if interval converged or maximum number of iterations reached */ tmp1 = (d__1 = right - left, abs(d__1)); /* Computing MAX */ d__1 = abs(right), d__2 = abs(left); tmp2 = max(d__1,d__2); /* Computing MAX */ d__1 = max(atoli,*pivmin), d__2 = rtoli * tmp2; if (tmp1 < max(d__1,d__2)) { *info = 0; goto L30; } if (it > itmax) { goto L30; } /* Count number of negative pivots for mid-point */ ++it; mid = (left + right) * .5; negcnt = 0; tmp1 = d__[1] - mid; if (abs(tmp1) < *pivmin) { tmp1 = -(*pivmin); } if (tmp1 <= 0.) { ++negcnt; } i__1 = *n; for (i__ = 2; i__ <= i__1; ++i__) { tmp1 = d__[i__] - e2[i__ - 1] / tmp1 - mid; if (abs(tmp1) < *pivmin) { tmp1 = -(*pivmin); } if (tmp1 <= 0.) { ++negcnt; } /* L20: */ } if (negcnt >= *iw) { right = mid; } else { left = mid; } goto L10; L30: /* Converged or maximum number of iterations reached */ *w = (left + right) * .5; *werr = (d__1 = right - left, abs(d__1)) * .5; return 0; /* End of DLARRK */ } /* dlarrk_ */