''' Digit recognition adjustment. Grid search is used to find the best parameters for SVN and KNearest classifiers. SVM adjustment follows the guidelines given in http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf Threading or cloud computing (with http://www.picloud.com/)) may be used to speedup the computation. Usage: digits_adjust.py [--model {svm|knearest}] [--cloud] [--env ] --model {svm|knearest} - select the classifier (SVM is the default) --cloud - use PiCloud computing platform (for SVM only) --env - cloud environment name ''' # TODO dataset preprocessing in cloud # TODO cloud env setup tutorial import numpy as np import cv2 from multiprocessing.pool import ThreadPool from digits import * def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None): n = len(samples) folds = np.array_split(np.arange(n), kfold) def f(i): model = model_class(**params) test_idx = folds[i] train_idx = list(folds) train_idx.pop(i) train_idx = np.hstack(train_idx) train_samples, train_labels = samples[train_idx], labels[train_idx] test_samples, test_labels = samples[test_idx], labels[test_idx] model.train(train_samples, train_labels) resp = model.predict(test_samples) score = (resp != test_labels).mean() print ".", return score if pool is None: scores = map(f, xrange(kfold)) else: scores = pool.map(f, xrange(kfold)) return np.mean(scores) def adjust_KNearest(samples, labels): print 'adjusting KNearest ...' best_err, best_k = np.inf, -1 for k in xrange(1, 9): err = cross_validate(KNearest, dict(k=k), samples, labels) if err < best_err: best_err, best_k = err, k print 'k = %d, error: %.2f %%' % (k, err*100) best_params = dict(k=best_k) print 'best params:', best_params return best_params def adjust_SVM(samples, labels, usecloud=False, cloud_env=''): Cs = np.logspace(0, 5, 10, base=2) gammas = np.logspace(-7, -2, 10, base=2) scores = np.zeros((len(Cs), len(gammas))) scores[:] = np.nan if usecloud: try: import cloud except ImportError: print 'cloud module is not installed' usecloud = False if usecloud: print 'uploading dataset to cloud...' np.savez('train.npz', samples=samples, labels=labels) cloud.files.put('train.npz') print 'adjusting SVM (may take a long time) ...' def f(job): i, j = job params = dict(C = Cs[i], gamma=gammas[j]) score = cross_validate(SVM, params, samples, labels) return i, j, score def fcloud(job): i, j = job cloud.files.get('train.npz') npz = np.load('train.npz') params = dict(C = Cs[i], gamma=gammas[j]) score = cross_validate(SVM, params, npz['samples'], npz['labels']) return i, j, score if usecloud: jids = cloud.map(fcloud, np.ndindex(*scores.shape), _env=cloud_env, _profile=True) ires = cloud.iresult(jids) else: pool = ThreadPool(processes=cv2.getNumberOfCPUs()) ires = pool.imap_unordered(f, np.ndindex(*scores.shape)) for count, (i, j, score) in enumerate(ires): scores[i, j] = score print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100) print scores i, j = np.unravel_index(scores.argmin(), scores.shape) best_params = dict(C = Cs[i], gamma=gammas[j]) print 'best params:', best_params print 'best error: %.2f %%' % (scores.min()*100) return best_params if __name__ == '__main__': import getopt import sys print __doc__ args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env=']) args = dict(args) args.setdefault('--model', 'svm') args.setdefault('--env', '') if args['--model'] not in ['svm', 'knearest']: print 'unknown model "%s"' % args['--model'] sys.exit(1) digits, labels = load_digits('digits.png') shuffle = np.random.permutation(len(digits)) digits, labels = digits[shuffle], labels[shuffle] digits2 = map(deskew, digits) samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0 t = clock() if args['--model'] == 'knearest': adjust_KNearest(samples, labels) else: adjust_SVM(samples, labels, usecloud='--cloud' in args, cloud_env = args['--env']) print 'work time: %f s' % (clock() - t)